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Foreword

TAccording to Finnish Workers’ Compensation Act, “The Finnish 
Workers’ Compensation Center acts as the joint body for the 
implementation and development of the insurance”. An impor-
tant part of this role is to produce diverse and useful data and 
knowledge about the occupational accidents and diseases as 
well as the overall business environment of the workers’ com-
pensation scheme.

Risk and uncertainty are two fundamental concepts among the
insurance business. According to the simple universal defini-
tion, the risk could be defined as the combination of the prob-
ability of occurrence of a defined threat or loss and the magni-

tude or severity of the consequences of the occurrence. Thus, comprehensive understanding 
of the factors affecting the probability and severity of the compensable losses is needed in 
order to manage successfully the risk based workers’ compensation insurance risks.  

This study deals with the latter component of the risk, that is, the severity. The aim of the 
study was to develop a binary classification model to predict the severity of a workplace 
accident based on the variables defined in the European Statistics on Accidents at Work 
(ESAW) methodology to describe the circumstances of occurrence of occupational acci-
dents. One could list many valid and favorable arguments to find this aim worth pursuing. 
Briefly, gaining knowledge about the dynamics of the underlying causes affecting the sever-
ity of the accidents after the occurrence of the compensable claim events would help insur-
ance companies act efficiently, swiftly and focus rehabilitation efforts on people with a 
higher risk of prolonged absence from work. This would benefit both insurance companies 
and employers due to rapid return to work and lower disability costs – not to mention the 
insured employee who gets proper medical treatment immediately after the accident and is 
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director, TVK



able to return to work and daily routines soon. Moreover, reliable knowledge of the factors 
affecting the severity of the accidents is highly valuable from the primary prevention point of 
view enabling efficient allocation and focusing of the occupational safety resources and 
procedures.

In this study, workplace accident outcomes were predicted using Tree-Structured Parzen 
Estimator optimized XGBoost algorithm. Outcomes were divided into serious and non-seri-
ous accidents based on the absence from work. Cases where the absence from work was 
more than 30 days, were considered serious.

The aims of the study were achieved. Despite its limitations, the TPE-optimized model could 
predict serious accidents with an accuracy of 73% and non-serious accidents with an accu-
racy of 77%. Less surprisingly, wounds and superficial injuries and bone fractures were 
found to be the most important features predicting the workplace accident outcome. In 
addition to the potential financial benefits and other practical implications, the model itself 
and overall findings of the study enhance knowledge and gain our understanding about the 
complex dynamics of the factors affecting the severity of the accidents. Moreover, this study 
represents a new approach to promote our efforts to find new methods in analyzing workers’ 
compensation insurance data.
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Antton Koskinen: Predictive modeling of workplace accident outcomes utilizing XGBoost and 
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Workplace accidents induce a cost of hundreds of millions of euros for insurance companies 
annually and indirectly even higher costs for employers and society, including human suffer-
ing. However, most of these costs are driven by the employee’s recovery time, and by advanc-
ing employees returning to work, the cost of workplace accidents can be reduced. 

From the insurance companies’ perspective, employees’ return to work can be advanced by 
helping the accident victim get appropriate care as soon as possible by improving the admin-
istrative process.

One way to advance the administrative process is by giving priority to cases involving a 
higher risk of prolonged absence from work. Therefore, this research aims to develop a 
prediction model to identify victims of workplace accidents that are likely to suffer a pro-
longed absence from work to help direct resources where most needed. 

The seriousness of the accident was defined based on the absence from work, and acci-
dents, where the absence was more than 30 days, were considered serious. Following this, a 
binary classification model was developed utilizing ESAW variables described in the accident 
notice submitted to the insurance company. 

The model used in this research was XGBoost, and it was optimized using Tree-Structured 
Parzen Estimator (TPE). In addition, the model was trained using accident notifications 
delivered to insurance companies and collected by the Finnish Workers Compensation 
Center. 

The model could predict serious accidents with an accuracy of 73% and non-serious acci-
dents with an accuracy of 77%.
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Työpaikkatapaturmat aiheuttavat vuosittain satojen miljoonien eurojen kustannukset vakuu-
tusyhtiöille, sekä epäsuorasti vielä suuremmat kustannukset työnantajille ja yhteiskunnalle, 
mukaan lukien inhimillisen kärsimyksen. Suurin osa näistä kustannuksista riippuu työnteki-
jän työkyvyn palautumisesta ja nopeuttamalla työntekijän työhön paluuta työpaikkatapatur-
mien kustannuksia voidaan pienentää. 

Vakuutusyhtiöiden näkökulmasta työntekijän työhön palaamista voidaan edistää tarjoamalla 
tapaturman uhrille soveltuvaa hoitoa mahdollisimman nopeasti nopeuttamalla hallinnollisia 
prosesseja.

Yksi tapa parantaa hallinnollisia prosesseja on asettaa tapaukset etusijalle, joissa riski 
pitkittyneeseen työpoissaoloon on korkea. Tämän pohjalta tutkimuksessa kehitetään 
ennustemalli tunnistamaan kyseiset korkean riskin työpaikkatapaturmat.

Työpaikkatapaturmien vakavuus määriteltiin työkyvyttömyyden pituuden mukaan, jolloin 
tapaturmia, jotka johtivat yli 30 päivän työkyvyttömyyteen määriteltiin vakaviksi. Tämän 
määrittelyn perusteella kehitettiin binäärinen luokittelumalli hyödyntämään vakuutusyhtiöille 
toimitettavien vahinkoilmoitusten sisältämiä ESAW-muuttujia.

Tutkimuksessa sovellettiin XGBoost-algoritmia, joka optimoitiin käyttäen Tree-Structured 
Parzen Estimator-algoritmia. Malli opetettiin käyttäen Tapaturmavakuutuskeskuksen 
aineistoa vakuutusyhtiöille toimitettavista vakuutusilmoituksista. 

Malli pystyi ennustamaan vakavia työpaikkatapaturmia 73% tarkkuudella ja ei-vakavia työ-
paikkatapaturmia 77% tarkkuudella.
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1. Introduction

In 2021, insurance institutions paid compensation for around 91 800 workplace 

accidents (Finnish Workers’ Compensation Center, 2021) concerning more than 3% of the 

employed workforce of Finland (Statistics Finland, 2021). Considering this large number 

of victims, it is no surprise that workplace accidents induce a cost of hundreds of 

millions of euros for insurance companies annually and indirectly even higher costs for 

employers and society, including human suffering. 

Most of the costs associated with workplace accidents are driven by the employee’s 

recovery time, and by advancing employees returning to work, the cost of workplace 

accidents can be reduced. Furthermore, the employee’s return to work can be advanced 

by improving the care chain, including the administrative, diagnosis, and treatment 

processes, and especially by providing appropriate medical care as soon as possible. 

However, there is still much to improve in the care chain concerning workplace 

accidents. For example, in the case of knee injuries, only 55% of the patients get MRIs 

within two weeks of the accident, and only 5 % receive surgery within 1-to 2 weeks as 

recommended (Pietilä, 2018). 

From the insurance companies’ perspective, employees’ return to work can be advanced 

by helping the accident victim get appropriate care as soon as possible by improving the 

administrative process. One way to advance the administrative process is by prioritizing 

cases involving a higher risk of prolonged absence from work by using machine learning 

to predict such accidents. In the event of a workplace accident, the employer must report 

the claim event to the insurance company. These accident notices can be used to predict 

the outcome of a workplace accident. 
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Finnish Accidents at Work and Occupational Diseases Act requires employers to notify 

the insurance company about the claim incident and set requirements for the accident 

notification variables. However, the accident notification form must also follow the 

requirements set by European Commission. The required variables describing the 

workplace accident by the European Commission Regulation No 349/2011 are referred to 

as ESAW-variables. 

European Statistics on Accidents at Work (ESAW) project was launched to harmonize 

data on accidents at work for all accidents resulting in more than three days of absence 

from work. Its primary purpose was to provide up-to-date descriptions and references 

among members of the European Union. According to the framework, the data must 

cover the characteristics of the injured person, injury, enterprise, workplace, and 

accident. Furthermore, the characteristics of the accident must include the sequence of 

events characterizing the causes and circumstances of the accident (Eurostat, 2013, p. 

5). 

Finnish Workers’ Compensation Center has collected accident notices submitted to 

insurance companies for over 20 years, being the official authority for statistics 

concerning occupational accidents and diseases in Finland. In this research, we are 

going to use this data to predict workplace accident outcomes that can help the 

insurance companies to advance their administrative process leading to a shorter 

recovery time for the accident victims. 

1.1. Objective and research questions 

This research aims to develop a binary classification model to predict the outcome of a 

workplace accident based on the ESAW variables described in the accident notice 

submitted to the insurance company. In this research, accident outcomes were classified 

as serious and non-serious where accidents that lead to more than 30 days absence from 
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work are considered serious. According to the presented research objective the research 

questions are as follows: 

1) How well can ESAW variables be used to predict the outcome of a workplace

accident?

2) What are the most crucial ESAW variables for predicting the outcome of a

workplace accident?

3) Can the prediction model provide financial benefits to an insurance company?
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2. Background

This part chapter will discuss the definition of workplace accidents, the care chain 

concerning workplace accidents, the effects of delays in the administrative -and 

treatment process, the cost of workplace accidents, and the previous research on 

accident outcome prediction.  

2.1. Definition of a workplace accident 

Finnish Accidents at Work and Occupational Diseases Act defines workplace accidents 

as incidents that result in an effect causally linked to the incident and are suffered by 

employees during activities generally associated with being at the workplace. This 

definition also includes accidents that occur during work-related travel, performing the 

duties of an employee representative, or performing tasks on behalf of the employer 

(Finnish Accidents at Work and Occupational Diseases Act 2015/459 § 21-24). 

An accident means a sudden and unforeseen event arising from an external factor that 

causes the employee to be injured or develop an illness (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 § 17). Under certain circumstances, muscle or 

tendon pain can also be considered an accident, even when an apparent external factor is 

not demonstrated. In most cases, the effect is an apparent physical injury, but the impact 

may also be psychological, such as an acute stress reaction to a threatening event at 

work (Salo, 2015, p. 46). 

2.2. The care chain 

The care chain includes all possible administrative- and medical steps from handling the 

insurance claim to treatments supporting a workplace accident victim’s recovery. This 
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part will cover the essential elements of the care chain, including the insurance claim 

process and steps after and before the compensation decision. 

2.2.1. The process of handling insurance claims 

When the employer pays or has agreed to pay wages amounting to more than 1300 euros 

in a calendar year Workers’ Compensation Act requires employers to insure their 

employees against accidents at work and occupational diseases (Finnish Accidents at 

Work and Occupational Diseases Act 2015/459 § 3). 

In the event of a workplace accident, the employee must report the claim event to the 

employer, who notifies the insurance company. Thus, the claim is formally initiated by 

the employer’s notice, launching the claim process. The employer must file the claim 

without delay and no later than ten working days from when the employer was made 

aware of the accident (Finnish Accidents at Work and Occupational Diseases Act 

2015/459 § 110-111). 

According to the Workers’ Compensation Act, the claim must specify the name and 

contact details of the employer, name of the injured employee, personal identity code, 

contact information, and details of the accident (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 § 111). Furthermore, the accident details are 

reported according to the standards set by the European Statistical Office (Eurostat) 

following European Statistics on Accidents at Work (ESAW) framework. 

The insurance company must issue its compensation decision no later than 30 days after 

receiving adequate information to resolve the matter. If the time limit is exceeded, the 

insurance company will pay an increase for the delay (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 § 127). In this research, we chose the time limit for 

the compensation decision as a threshold for serious accidents.  
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To advance the recovery, it is essential to direct the workplace accident victim to 

appropriate medical care as soon as possible. From the insurance company’s 

perspective, this can be done by helping the injured person to get diagnosed as quickly 

as possible and making the compensation decision as soon as possible based on that 

information. 

2.2.2. Before compensation decision 

After the accident, the employee can choose either private or public medical institutions 

for the initial treatment and diagnosis. In both cases, the employer gives an insurance 

certificate to the employee who can use it to receive free of charge treatment in the 

medical institution. Although the employee will have to pay for the treatment and the 

medication without the insurance certificate, the insurance company will compensate for 

the expenses against receipt (Salo, 2015, p. 83-84). 

Generally, the insurance company must be notified before receiving medical treatment; 

otherwise, the treatment is not compensable (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 § 146, 110). However, in the case of general care or 

emergency care, the insurance company does not need to be notified beforehand. 

Emergency care means treatment cannot be delayed without worsening the injury. 

General care consists of medical appointments and minor treatments like 

ultrasonography or radiography that cost less than 300 euros in a private institution. 

(Finnish Accidents at Work and Occupational Diseases Act 2015/459 § 43-44). 

General care or emergency care does not require payment commitment from the 

insurance company (Finnish Accidents at Work and Occupational Diseases Act 2015/459 

§ 44). In other cases, medical care received in private medical institutions will not be fully 

compensated and can only amount to the service fee charged in public medical 

institutions (Finnish Accidents at Work and Occupational Diseases Act 2015/459 § 45).
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The medical institution formulates a plan for medical rehabilitation, treatment, or medical 

examinations that it sends to the employee’s insurance company together with the 

medical report. The employer’s insurance company can then make the compensation 

decision based on the medical and accident reports (Salo, 2011, p. 84). 

Although the payment commitment is needed for further treatment in a private medical 

institution, this is not the case with public medical institutions since the municipality 

provides medical care for the patient. Public medical institutions cannot delay the 

treatment even if the insurance company has not made the compensation decision 

(Occupational Health Care Act 1326/2010). 

2.2.3. After compensation decision 

In favorable compensation decisions, insurance companies are fully responsible for the 

cost of the treatment process, including medical rehabilitation (Finnish Accidents at 

Work and Occupational Diseases Act 2015/459 § 37). Apart from the medical cost, 

insurance companies are also responsible for compensating for the loss of income 

incurred by the workplace accident (Finnish Accidents at Work and Occupational 

Diseases Act 2015/459 § 56). In most cases, compensation claims lead to a favorable 

compensation decision. For example, in 2018, only 10 percent of claims reported to 

insurance companies were rejected on legal or medical grounds (Finnish Workers’ 

Compensation Center, 2021). 

Insurance companies can direct the employee to a private medical institution to support 

recovery. In such a case, the insurance company will give the employee a payment 

commitment to a different medical institution in these cases. Payment commitment will 

ensure that the accident is compensable (Finnish Accidents at Work and Occupational 

Diseases Act 2015/459 § 45, 42). Apart from medical treatments and operations, the 

supporting processes include rehabilitation counseling, therapies to improve and 
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maintain functional capacity, medical rehabilitation aids, adaptation training, and 

rehabilitation episodes in institutional or outpatient care. 

In the event the employee is unable to return to work, the employee is generally 

compensated in the form of daily allowance or pension (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 56, 59 §). In addition, the employee will also be 

compensated in the case of a general permanent functional limitation caused by the 

claim event (Finnish Accidents at Work and Occupational Diseases Act 2015/459 83 §) 

and for the cost of vocational rehabilitation if returning to work requires it (Finnish 

Accidents at Work and Occupational Diseases Act 2015/459 89 §). 

2.3. The cost of workplace accidents 

The direct cost of workplace accidents to the insurance companies can be divided into 

temporary and permanent costs. Temporary costs are realized within one year of the 

accident, and permanent costs during future accounting periods. 
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Table 1: Compensation paid by insurance companies concerning workplace accidents 

Year 2017 2018 2019 2020 

Workplace accidents 102 226 102 274 103 131 86 606 

Medical care 86 204 87 812 86 171 82 699 

Daily allowance 101 214 100 051 96 137 111 094 

Rehabilitation allowance 559 791 622 802 

Other -503 2 283 6 117 2 569 

All temporary costs 187 475 190 938 189 046 197 164 

Compensation for functional limitation 8 844 9 582 7 838 10 538 

Disability allowance 21 849 22 509 18 922 24 391 

Confirmed pensions 113 954 117 754 114829 136 406 

Rehabilitation allowance 6 095 6 283 6 567 8 783 

Funeral assistance 621 429 475 513 

The lump-sum compensation for disability 84 58 93 111 

Rehabilitation  12 943 12 301 11 242 11 640 

Other 1 261 1 782 1 968 3 141 

All permanent costs 165 653 170 698 161 933 195 523 

Other 88 667 92 633 142 076 107 612 

Total cost 353 128 361 636 493 056 392 687 

[Values are approximated from the occupational accident statistics by the proportion that 

workplace accidents represent them (Finnish Workers’ Compensation Center, 2021). All units are 

in thousands except workplace accidents. Other cost that are neither permanent nor temporary 

consist of index increments] 
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2.3.1. Temporary cost 

The main types of temporary costs consist of medical care, daily allowance, 

rehabilitation allowance, and another cost. 

Medical care includes emergency care, examination, diagnosis and treatment of the 

injury or illness, medications, treatment supplies, and medical rehabilitation. Medical 

rehabilitation includes rehabilitation guidance, assessment of rehabilitation needs, 

therapies to improve and maintain functional capacity, medical rehabilitation aids, 

adaptation training, and rehabilitation in institutional or outpatient care (Finnish 

Accidents at Work and Occupational Diseases Act 2015/459 37 §). 

In an occupational accident, the employee is entitled to a daily allowance if the 

employee’s work capacity has lowered more than 10 percent. If the absence from work is 

less than four weeks, the daily allowance is the same as the regular income. When the 

absence from work is more than four weeks, the daily allowance is 1/360 of the yearly 

income, and it can be paid for one year (Finnish Accidents at Work and Occupational 

Diseases Act 2015/459 § 56). Daily allowances are the most significant expenditure and 

have the most considerable potential for cost savings (Table 1). Focusing rehabilitation 

efforts on people with a higher risk of prolonged absence from work makes it possible to 

advance returning to work and thus decrease the cost of daily allowances. 

The injured person has the right to claim a rehabilitation allowance during vocational 

rehabilitation. The rehabilitation allowance corresponds to the total amount of the daily 

allowance for one year from the claim event date (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 69 §). In addition, the injured person is also 

compensated for costs of vocational rehabilitation required to help the injured person 

continue in their previous work or occupation or transfer to new work or an occupation 

(Finnish Accidents at Work and Occupational Diseases Act 2015/459 89 §). 
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Other cost includes travel and accommodation costs arising from compensated medical 

treatment (Finnish Accidents at Work and Occupational Diseases Act 2015/459 50 §), 

compensation for the unavoidable additional costs of housekeeping (Finnish Accidents 

at Work and Occupational Diseases Act 2015/459 53 §), compensation for medical aids 

used by the injured person and damaged in connection with the claim event. Other costs 

include torn clothes or broken rings during medical treatment (Finnish Accidents at Work 

and Occupational Diseases Act 2015/459 54 §). 

2.3.2. Permanent cost 

The main types of permanent costs are compensation for functional limitation, disability 

allowance, rehabilitation allowance, funeral assistance, rehabilitation, pensions, and 

other costs. Rehabilitation allowance, rehabilitation, and other costs are defined as 

before, but have been paid later than a year after the accident. 

Compensation for functional limitation is paid to an injured person who suffers a general 

permanent functional limitation because of an injury or illness caused by the claim event. 

Compensation for functional limitation does not compensate for deterioration of the 

ability to work caused by the claim event, costs arising from the need for care or 

assistance, or other injuries compensated separately (Finnish Accidents at Work and 

Occupational Diseases Act 2015/459 83 §). 

When the employee’s work capacity has lowered more than 10 percent for more than a 

year, the employee is entitled to an occupational injury pension (Finnish Accidents at 

Work and Occupational Diseases Act 2015/459 § 59). Disability allowance concerns 

cases where the injury pension has not yet been confirmed, but work absence has lasted 

more than a year. Out of all forms of compensation, pensions are the highest cost (Table 

1). 
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2.3.3. Indirect cost 

Workplace accidents also induce indirect costs for employers. These costs can include 

reduction in production, decreased sales, and cost for replacing the employee in paid 

overtime and temporary staff. Employers may also be liable to pay compensation if the 

employer’s negligence caused the workplace accident. Indirect costs have been 

estimated to be around 3-4 times bigger, corresponding to 1.5-2 billion euros annually 

(Rissanen and Kaseva, 2014, p. 6). Indirect costs are also linked to the length of the 

absence from work, and so by advancing the return to work, it is possible to decrease the 

indirect costs as well. 

2.4. Consequences of administrative delays 

Administrative delays in the compensation claim process may delay the employee’s 

recovery, inducing costs for insurance companies, employees, and employers alike. There 

have been some studies where the consequences of administrative delays have been 

examined. 

Sinnott assessed compensation claims from the California Workers’ Compensation 

Institute (CWCI) to determine whether claims acceptance or administrative delays 

influenced outcomes for individuals with acute back injuries. Beyond the first two weeks, 

each interval of administrative delay was associated with increased odds of developing 

chronic disability. For example, between 2 and 4 weeks, the adjusted odds ratio was 

found to be 1.433 (1.327-1.547) (Sinnott, 2009, p. 694). 

Stover identified predictive factors of long-term disability using administrative data from 

the Washington State Department of Labor and Industries. Workers with four or more 

days of work disability resulting from workplace injuries were followed for approximately 

six years. More than 20 days delay from the first medical visit to claim receipt was 

discovered to be a significant predictor of work disability with an adjusted odds ratio of 
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1.36 (1.29-1.45). In contrast, days to injury to first medical visit between 11 and 20 days, 

the odds ratio was 1.43 (1.32-1.54) and 1.81 (1.70-1.92) for more than 20 days (Stover et 

al., 2007, p. 35-36). 

Even though these results are not completely applicable to the Finnish insurance 

systems where every employee is insured, and thus the barriers to seeking medical help 

are lower, they still highlight the importance of an efficient insurance claim process. 

2.5. Consequences of delays in the treatment 

There exist a multitude of medical research focusing on the effects of delayed treatment. 

However, since we cannot cover all possible injury types, we focus on knee and shoulder 

injuries that are the most injured body parts among serious accidents. 

Hantes et al. discovered that early repair of traumatic rotator cuff tears (RCT) provides 

better results in terms of shoulder function in comparison with delayed repair. A delayed 

diagnosis of a traumatic RCT leads to difficulties in surgery and less good results 

(Hantes, 2011). Peterson’s research likewise implicates that earlier RCT repairs are 

associated with better recovery results (Peterson 2011). Vastamäki (2002) points out 

that swift diagnosis of RCT is essential since the delays significantly affect the outcome 

of the surgery even though contemporary research suggest physiotherapy for RCT 

(Rotator cutoff: Current Care Guidelines, 2014). 

Knee injuries are essential to diagnose and treat as soon as possible to avoid long 

absence from work or complications (Ristiniemi, 2018). Ristiniemi suggests surgery 

within 2 or 3 weeks for anterior cruciate ligament (ACL) trauma and lateral collateral 

ligament (LCL) trauma. Research conducted by Lin et al. also indicates that ACL-injured 

patients should undergo ACL reconstruction as early as possible (within one month) to 

lower the risk of knee osteoarthritis (Lin et al., 2017). Hohmann et al.’s research points in 

the same direction that early surgical intervention in multi-ligament injuries of the knee 
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produces a significantly superior clinical outcome compared to late reconstruction 

(Hohmann et al., 2017). Even in the less severe cases of acute dislocations of knee or 

ACL trauma, MRI should be done immediately to identify possible associated injuries 

(Ristiniemi, 2018). 

In the light of prevailing research, shoulder and knee injuries should be diagnosed and 

treated soon as possible to support the patient’s recovery to work. Contrary to this 

knowledge Pietilä, who analyzed Finnish occupational accidents and diseases statistics, 

discovered that surgeries that were recommended to do within two months from the time 

of the accidents were often delayed. In the case of RCT injuries, only 5 % of patients 

received surgery within recommended 1-2 weeks as recommended (Pietilä, 2018, p. 129), 

and for ACL injuries, only 15% within recommended 3-5 weeks (Pietilä, 2018, p. 126). It is 

not clear why the treatment is often delayed. One reason could be shortcomings in the 

diagnosis process. In the case of knee injuries, only 37% of the patients had MRI within 

one week of the accident and 55% within two weeks, and for shoulder injuries, only 38% 

of the patients had MRI within one week of the accident and 66% within two weeks 

(Pietilä, 2018, p. 125). Even though Pietilä’s research concerns all occupational accidents, 

we can assume that the results also apply to workplace accidents.  

According to the research presented in this chapter, it is safe to say that delays in 

treatment affect the recovery for all injuries to a varying degree, obscure the correct 

diagnosis, and affect the time of surgery or other medical procedures. Therefore, it seems 

that the care chain concerning the treatment of workplace accidents in Finland could be 

improved by providing patients with faster diagnosis and treatment. 

2.6. Previous research on accident outcome prediction 

This part will discuss previous research on accident outcome classification and pattern 

extraction. Predicting safety outcomes has been done before, but primarily for specific 

industries. Here we focus on studies where the data size was at least 1000 accidents. 
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Anurag et al. (2020) used Logistic regression (LR), Decision tree (DT), Random Forest 

(RF), and Artificial neural network (ANN) models to predict mining accident outcomes in 

the United States utilizing structural data like ESAW-variables. Accident outcomes were 

divided into nine different classes based on the length of absence from work. ANN 

achieved the best prediction accuracy with structured data with an accuracy of 78% and 

an F1-score of 0.67. 

Sobhan et al. (2019) optimized SVM and ANN algorithms using particle swarm 

optimization (PSO) and genetic algorithms (GA) to predict accident outcomes in the 

Indian steel industry. Accident outcomes were classified as injury, near misses, and 

property damage. The data consisted of 15 categorical features and text variables. SVM 

outperformed ANN with both optimization methods, and particularly PSO-SVM performed 

the best with an accuracy of 90.67%. 

Matias et al. (2008) analyzed workplace falls in Spain using decision tree (DT), support 

vector machine (SVM), extreme learning machine (ELM), and Bayesian network (BN) 

algorithms. In their research, BN was the best classifier in predicting accidents and 

extracting important factors behind accidents. 

There have been some studies where data mining techniques have been applied to 

Finnish occupational accidents and diseases statistics data. For example, Nenonen 

(2011) examined association rules related to slipping, stumbling, and falling accidents at 

work. Furthermore, Rojas et al. (2018) used the same technique and data to study 

construction accidents in Finland. 
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3. Data

In this chapter, we will describe the data used in this research and the justification for 

selecting it. 

3.1. Description of the data and variables 

Finnish Workers Compensation Center’s occupational accident data set consists of 

around 2.7 million workplace accident notices from 1999 to 2020. The data set has more 

than 20 variables, including, in addition to the ESAW variables, time of the accident, 

industry, occupation, gender, age group, corporate id, sector, regional state administrative 

agency, municipality, and the absence from work resulting from the accident. However, 

most of these variables were not considered to affect the accident outcome and were 

discarded. 

The data set includes eight ESAW variables that describe the causes and circumstances 

of accidents at work: working process, specific physical activity, deviation, contact, and 

mode of injury, material agent associated with the mode of injury, workstation (until 

2015), working environment (from 2016), type of injury, and part of the body injured. 

Over the years, there have been several changes to the Finnish Workers’ Compensation 

Center statistics of occupational accidents and diseases. For this reason, the data is not 

perfectly coherent throughout the years and requires some consideration before utilizing 

the data. 

The most notable changes happened in 2005 when a new legislative reform took place. 

After the legislative reform, treatments done in public medical institutions were priced 

according to their actual cost instead of previously charged fixed customer payment. 

Before the legislative reform, the employees paid the customer payment by themselves. 
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After the legislative reform, the whole treatment is paid for by the employee’s insurance 

company. Making treatment in public medical institutions free for employees naturally 

increased the number of claims from minor injuries that do not lead to lost income 

compensation. Because of this, we disregarded data before 2005. 

A second significant change occurred in 2016 when the classification of occupations 

changed to correspond to the classification used by Statistics Finland. Unfortunately, the 

occupational classification standard used before 2016 is difficult to convert to be fully 

comparable with the new standard. Therefore, the variable describing occupation was 

discarded. 

A third significant change happened in 2016 when a working environment variable 

replaced the workstation variable. Because of this neither variable covers the whole 

analysis period, and both variables describing the working environment were discarded. 

The final data set consists of 9 predictive variables: working process, specific physical 

activity, deviation, contact, mode of injury, a material agent associated with the mode of 

injury, type of injury, part of the body injured, age, and gender. In addition, the target label 

was formed using the variable describing absence from work caused by workplace 

accidents. 

After removing missing data, variable levels that had less than ten observations, and 

accidents that resulted in death, the data consisted of around 1.47 million accidents. 

3.2. Distributions of the variable levels 

This part examines the class distribution and the ratio between proportions of each class 

level for serious and non-serious accidents. The ratio tells if any class level is 

represented more among serious accidents than non-serious accidents and vice versa. 
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We also analyze the distribution of the variable describing the length of absence from 

work used to from the target labels. 

Variables can be divided into three groups based on what stage of the accident they are 

describing: 1) variables that describe the outcome of the accident, including injury type 

and body variable 2) variables that describe the mechanism of the accident, including 

material agent associated with the mode of injury, deviation, contact mode of the injury 

and specific physical activity 3) variables describing the injured person before the 

accident including age, gender and working process. 

Even though missing features (XX) are removed from the data when training the model, 

we include them when examining the variables. 

3.2.1. Material agent associated with the mode of injury 

Figure 1. Material agent associated with the mode of injury. The upper plot describes the 

distribution of class levels where the x-axis represents class levels and y-axis proportions. The 

lower plot describes the ratio between level frequencies of serious and non-serious accidents 

where x-represents class levels and the y-axis is the ratio between proportions of serious and 

non-serious accidents. Feature descriptions can be found from Table A1. 
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Material agent associated with the mode of injury means the object, tool, or instrument 

with which the victim came into contact at the accident. We can see that the material 

agent variable is very unevenly distributed, with ten (out of 71) most frequent levels 

covering more than 80% of the cases (Fig. 1). 

Materials, objects, products, machine or vehicle components, debris, or dust (4100), and 

buildings, structures, and surfaces at ground level (1100) are the most frequent material 

agents associated with the mode of injury, covering around 40 % of all the cases. 

However, this is not surprising since both classes cover many possible material agents. 

Buildings, structures, and ground-level surfaces (1100) are more common among serious 

accidents, and materials, objects, products, machine or vehicle components, debris, and 

dust (4100) are more common among non-serious accidents (Fig. 1). 

Multiple material agents are substantially more common among serious accidents than 

non-serious accidents, but almost all of them appear very rarely. Mobile ladders (1221), 

temporary scaffolds (1230), fixed ladders (1210), mobile scaffolds (1223), fixed machine 

tools for sawing (2711), portable or mobile machines for extracting materials, working the 

ground, and civil engineering works (2601), fixed forming machines for pressing and 

crushing (2707), machines for calendering, rolling and cylinder pressing (2708) and fixed 

machines for extracting materials and working the ground (2701) are all twice as 

common among serious accidents than among non-serious accidents (Fig. 1). We can 

notice that these features describe places above ground level (1221, 1230, 1210, 1223) or 

machines (2701, 2707, 2601, 2711, 2708). 

Bulk waste (5200), chemical, explosive, radioactive, biological substances (4200), and 

hand tools (2300) are substantially more common among non-serious accidents when 

considering more frequent material agents (Fig. 1). 

The problem with the material agent associated with the mode of injury variable is that it 

has multiple features, but most of them appear infrequently. Some of these features 
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could share a similar accident mechanism and be combined. Mainly features describing 

materials above the ground level seem intuitively similar. However, in this research, we 

do not want to make any assumptions about the accident mechanism. 

3.2.2. Working process 

Figure 2. Working process. The upper plot describes the distribution of class levels where the x-

axis represents class levels and y-axis proportions. The lower plot describes the ratio between 

level frequencies of serious and non-serious accidents where x-represents class levels and the y-

axis is the ratio between proportions of serious and non-serious accidents. Feature descriptions 

can be found from Table A4. 

The working process is the primary type of work or task (general activity) performed by 

the victim before the accident. It describes in broad terms the kind of work the victim was 

performing during a period ending at the instant of the accident. 

Production, manufacturing, and processing (11) and service, care, or assistance to the 

general public (41) are the most common working processes (Fig. 2). 

The differences between serious accidents and non-serious accidents are not generally 

significant. Sailoring (63), agriculture type of work (31), and fishing (35) are the only 
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working processes where the proportion of serious accidents can be considered quite 

large. However, those working processes also have the smallest number of observations 

(Fig. 2). 

Among the more frequent classes, movement (61) and new construction buildings (22) 

are more common among serious accidents. On the other hand, buying, selling, and 

associated services (43) are considerably more common among non-serious accidents 

(Fig. 2). 

3.2.3. Part of the body injured 

Figure 3. Part of the body that was injured. The upper plot describes the distribution of class 

levels where the x-axis represents class levels and y-axis proportions. The lower plot describes 

the ratio between level frequencies of serious and non-serious accidents where x-represents 

class levels and the y-axis is the ratio between proportions of serious and non-serious accidents. 

Feature descriptions can be found from Table A6. 

Body variable is also unevenly distributed, with the ten most frequent levels covering 

almost 80% of the cases. Among these features, fingers (54) are the most injured body 
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part with 20% frequency and more common among non-serious accidents. At the same 

time, legs, and knee (62) injuries are the most common type of serious injuries (Fig. 3). 

Shoulder and shoulder joints (51) and arm, including elbow (52), are more than twice as 

common among serious accidents than among non-serious accidents, and overall hand 

injuries seem to be more heavily represented among serious accidents (52, 53, 58, 59). 

On the other hand, head injuries (11, 13, 12, 15, 19, 14) are several times more frequent 

among non-serious accidents than serious accidents (Fig. 3). Especially eye (13) and 

facial area (12) injuries are prevalent among non-serious accidents. 

3.2.4. Deviation 

Figure 4. Deviation. The upper plot describes the distribution of class levels where the x-axis 

represents class levels and y-axis proportions. The lower plot describes the ratio between level 

frequencies of serious and non-serious accidents where x-represents class levels and the y-axis 

is the ratio between proportions of serious and non-serious accidents. Feature descriptions can 

be found from Table A5. 
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Deviation means the last event differing from the norm and leading to the accident. The 

deviation is the event that triggers the accident; however, the previous deviation is 

recorded if a chain of events leads to the accident. 

Slipping, stumbling, and falling (50) is the most common deviation and the only type of 

deviation that is more common among serious accidents than non-serious accidents 

(Fig. 4). On the other hand, deviation by overflow, overturn, leak, flow, vaporization, 

emission (20) is several times as common among non-serious accidents than serious 

accidents. Body movement without physical stress (60) is also more than twice as 

common among non-serious accidents (Fig. 4). 

The problem with the deviation variable is that its classes are very general, and the 

classes may encompass different accident types that could have other accident outcome 

implications. 

3.2.5. Physical activity 

Figure 5. Specific physical activity. The upper plot describes the distribution of class levels where 

the x-axis represents class levels and y-axis proportions. The lower plot describes the ratio 

between level frequencies of serious and non-serious accidents where x-represents class levels 
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and the y-axis is the ratio between proportions of serious and non-serious accidents. Feature 

descriptions can be found from Table A3. 

Specific physical activity refers to the action being performed by the victim at the exact 

time of the accident. It covers only a short period, while the working process describes a 

task performed over a substantial period. Specific physical activity is far more precise 

and can be isolated from the chain of events leading to the accident. 

Movement (60) is the most common physical activity and the only variable with driving 

(30) that is more common among serious accidents than non-serious accidents (Fig. 5). 

On the other hand, handling objects (40) and working with hand-held tools (20) are the 

only variables significantly more common among non-serious accidents, the latter being 

twice as common among non-serious accidents (Fig. 5).

There are pretty slight differences between levels of specific physical activity-variable, 

indicating that it is not probably too relevant in predicting accident outcomes. One 

explanation is that the levels are too broad and do not accurately describe the physical 

activity. Another explanation is that physical activity is not an important variable when 

describing accident mechanisms. 
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3.2.6. Age 

Figure 6. Age groups. The upper plot describes the distribution of class levels where the x-axis 

represents class levels and y-axis proportions. The lower plot describes the ratio between level 

frequencies of serious and non-serious accidents where x-represents class levels and the y-axis 

is the ratio between proportions of serious and non-serious accidents. Feature descriptions can 

be found from Table A8. 

Age groups are ordered from youngest to oldest, with 1 being 0–14 years old and 12 over 

64 years old. 

Age groups are very evenly distributed apart from the two oldest and youngest age 

groups (1, 2, 11, 12). We can see clearly how the ratio between serious accidents and 

non-serious accidents raises with the increase of age, and for over 64 years old (12), 

serious accidents are twice as common. On the other hand, for the youngest groups (2, 

1), non-serious accidents are several times more common (Fig. 6). 
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3.2.7. Contact mode of injury 

Figure 7. Contact mode of injury. The upper plot describes the distribution of class levels where 

the x-axis represents class levels and y-axis proportions. The lower plot describes the ratio 

between level frequencies of serious and non-serious accidents where x-represents class levels 

and the y-axis is the ratio between proportions of serious and non-serious accidents. Feature 

descriptions can be found from Table A7. 

Contact mode of injury means the contact that injured the victim. It describes how the 

victim was hurt (physical or mental trauma) by the material agent that caused the injury. 

If there are several contact modes of the injury, the one causing the most serious injury is 

recorded. 

Again, we notice a very uneven distribution of variable levels. Horizontal or vertical 

impact with or against a stationary object (30) is the most frequent contact mode of 

injury and the most common type of serious injury. Horizontal or vertical impact with or 

against a stationary object (30) and trapped or crushed (60) are the only variable levels 

that are somewhat more common among serious accidents (Fig. 7). 
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Contact with hazardous substances through skin or eyes (16), contact with hazardous 

substances by inhalation (15), contact with sharp, pointed, rough, or coarse material 

agent (50), direct contact with electricity (12), contact with naked flame or a hot or 

burning object or environment (13) and indirect contact with a welding arc, spark, 

lightning are all several times more common among non-serious accidents (Fig. 7). 

3.2.8. Injury type 

Figure 8. Injury type. The upper plot describes the distribution of class levels where the x-axis 

represents class levels and y-axis proportions. The lower plot describes the ratio between level 

frequencies of serious and non-serious accidents where the x-represents class levels and the y-

axis is the ratio between proportions of serious and non-serious accidents. Feature descriptions 

can be found from Table A2. 

Injury type describes physical consequences for the victim. In case of multiple injuries 

suffered in one accident where one of the injuries is more severe than the others, then 

this accident should be classified in the group corresponding to the nature of the more 

severe injury. Only in cases where the victim has contracted two or more injuries, and one 

of them cannot be said to be more serious than the other(s), the code 120 "multiple 

injuries" should be used. 
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Wounds and superficial injuries (010) and dislocations, sprains, and strains (030) are the 

most common type of injuries representing more than 70% of the accidents (Fig. 8). 

Traumatic amputations (040) are about 20 times more common among serious 

accidents than non-serious accidents. In addition, bone fractures (20) are almost nine 

times more common among serious accidents than non-serious accidents. Also, cases 

with multiple injuries (120) are several times more common for serious accidents (Fig. 8). 

Wounds and superficial injuries (010), effects of temperature extremes, light, and 

radiation (100), effects of sound, vibration, and pressure (090), and poisonings and 

infections (070) are all several times more common among non-serious accidents (Fig. 

8). 

The only features of the injury type variable that are not disproportionally distributed 

among serious and non-serious accidents are dislocations, sprains and strains (030), and 

concussion and internal injuries (050). 
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3.2.9. Gender 

Figure 9. Gender. The upper plot describes the distribution of class levels where the x-axis 

represents class levels and the y-axis proportions. The lower plot describes the ratio between 

level frequencies of serious and non-serious accidents where x-represents class levels and the y-

axis is the ratio between proportions of serious and non-serious accidents. 

Men are represented around twice as frequently in the data compared to women. Men are 

also slightly more represented among serious accidents than women, likely because 

more men work in industries with higher accident frequency (Fig. 9). 
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3.2.10. Seriousness of the workplace accident 

Figure 10. The length of absence from work. The y-axis describes frequency and x-axis day 

groups. 

We can notice that accidents leading to 0-3 days absence from work are the most 

frequent, with almost 60% of the accidents belonging to that group. For this group, daily 

allowances are not paid. Interestingly accidents leading to 7-14 days absence are more 

common than accidents leading to 4-6 days absence from work (Fig. 10). 

Around 8% of the accidents lead to an accident where the absence from work is more 

than 30 days and are considered serious from this research’s perspective (Fig. 10). 
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4. Methods

In this part, we will explore methods used in this research. XGBoost is an implementation 

of gradient boosted decision trees. For this reason, we will first explain the basic ideas 

behind ensemble methods and decision trees and then proceed to an in-depth 

description of XGBoost to define the optimized parameters’ purpose. After that, we cover 

hyperparameter optimization and relevant optimization algorithms concerning this 

research. Finally, we briefly discuss imbalance learning and its implications concerning 

this research. 

4.1. Ensemble methods 

Classification error is composed of two components: bias and variance. Often, these two 

components have a trade-off relationship where classifiers with low bias tend to have 

high variance and vice versa. The point of the ensemble system is to bypass this 

limitation by combing different classifiers’ relatively fixed bias and then combining their 

outputs to reduce the variance. Ensemble systems work under the assumption that 

classifiers make different errors on each sample but generally agree on their correct 

classifications. Combining the classifier outputs reduce the error by averaging (some 

way) out the error components (Cha and Ma, 2012, p. 2-3). 

There are two general paradigms of ensemble methods: boosting, where the weak 

learners are generated sequentially, and bagging, where the weak learners are generated 

in parallel. In this research, we are focusing on boosting. 

The idea of boosting is to train a set of learners sequentially (vs. parallel) and combine 

them for prediction, where the later learners focus more on the mistakes of the earlier 

learners. Boosting algorithm begins with a simple high bias model initialized with a 
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constant value. It is then progressively made less biased by adding weak learners (Zhou 

and Zhi-Hua, 2012, p. 23). 

Boosting for binary classification problems works by creating sets of three weak 

classifiers at a time. The first classifier, h_1, is trained on a random subset of the 

available training data. The second classifier, h_2, is trained with a subset of data 

correctly identified by h_1. The third classifier, h_3, is then trained with instances on 

which h_1 and h_2 disagree. These three classifiers are then combined through some 

method (Cha and Ma, 2012, p. 13). 

There are many ways of combining ensemble members, but XGBoost uses a weighted 

sum over the ensemble members. Combining the classifier outputs does not necessarily 

lead to a better classification performance than the best classifier in the ensemble. 

However, it reduces our likelihood of choosing a classifier with poor performance (Zhou 

and Zhi-Hua, 2012, p. 68-69). 

4.2. Decision trees 

Decision trees are statistical models designed for supervised prediction problems where 

the model can be represented in a tree-like structure. Each internal node represents a 

split based on the values of one of the inputs, and the leaves represent the predicted 

target. At each node, one attribute is chosen to split the training data into distinct 

classes, and the new instance is classified by following a matching path to a leaf node. 

All cases reaching the same leaf are given the same predicted value or probability 

(Kotsiantis et al., 2006, p. 163). Lastly, to avoid overfitting, it is often desirable to prune 

the size of decision trees by removing sections of the tree that are non-critical and 

redundant to classify instances. Decision trees generally differentiate based on splitting 

variables and methods to prune the tree. 
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Decision trees have some advantages over some other supervised learning algorithms. 

Firstly, decision trees can be easily visualized and understood. Secondly, decision trees 

can handle missing values because they are part of the prediction rules, even though 

missing values are removed in this research. Thirdly, decision trees are fast compared to 

many other classification algorithms. Finally, decision trees can learn incrementally, 

which is useful when processing large data sets or streamed data (Aggarwal and Charu, 

2015, Ch. 4.7). 

Decision trees also have some significant weaknesses that should be considered during 

the model selection. Firstly, decision trees are volatile models, and minor changes in the 

training data set can cause substantial changes in the tree’s structure even if the overall 

performance remains the same. The standard method to mitigate the instability problem 

is to create an ensemble of trees, where the prediction score is a sum of multiple 

decision trees (Pinheiro and Patetta, 2021, Ch. 3.2). Secondly, decision trees are prone to 

overfit, so an efficient way to prune the decision tree is needed (Kotsiantis et al., 2006, p. 

163). 

4.3. XGBoost 

This part will cover XGBoost and its mathematical foundation to explain how the 

hyperparameters that are optimized in this research relate to the model. 

4.3.1. Tree ensemble 

The tree ensemble model in XGBoost consists of CARTs, where the prediction score is a 

sum of all these trees. CART is a non-parametric decision tree algorithm that considers 

all possible splits of the set into two disjoint and complementary subsets for discrete 

variables. In CART, each tree node is assigned the class label dominating within the 

node. 
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For a given data set 𝐷𝐷 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} (|𝐷𝐷| = 𝑛𝑛, 𝑥𝑥 𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ ℝ), where n is the number of data 

instances and m number of features the ensemble model can be expressed as following 

𝑦𝑦�𝑖𝑖 = 𝜙𝜙(𝑥𝑥𝑖𝑖) = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)  𝑓𝑓𝑘𝑘 ∈ ℱ,
𝐾𝐾

𝑘𝑘=1

 

where ℱ = �𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥)�(𝑞𝑞:ℝ𝑚𝑚 → 𝑇𝑇,𝑤𝑤 ∈ ℝ𝑇𝑇) is CART. Here 𝑞𝑞 represents the structure of 

each tree that maps an example to the corresponding leaf index, 𝑇𝑇 is the number of 

leaves in the tree and 𝐾𝐾 is the number of weak learners, and specifically, in this case, 

trees. Each 𝑓𝑓𝑘𝑘 corresponds to an independent tree structure 𝑞𝑞 and leaf weights 𝑤𝑤 (Chen 

and Guestrin, 2016, p. 2). 

4.3.2. Objective function 

To find the optimal solution for our machine learning problem, we need to measure the 

quality of this solution. An objective function does this. The objective function takes data 

and model parameters as arguments and returns a number representing solutions quality 

in terms of the objective function. The objective function provides a formal specification 

for the classification problem. In this case, the optimal parameters cannot be found 

exactly but can be approximated using an iterative algorithm. 

To learn the set of function used in the model, we minimize the following regularized 

objective that consist of loss function and regularization term 

ℒ(𝜙𝜙) = �𝑙𝑙(𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖

+ �𝛺𝛺(𝑓𝑓𝑘𝑘)
𝐾𝐾

𝑘𝑘

, 

where 𝑙𝑙(𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖) is the loss function and 𝛺𝛺(𝑓𝑓𝑘𝑘) regularization term (Chen and Guestrin, 

2016, p. 2). 
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4.3.3. Regularization 

Regularization terms penalize the complexity of the model. The additional regularization 

term helps smooth the final learn weights to avoid over-fitting. When the regularization 

parameter is zero, the objective falls back to the traditional gradient tree boosting. 

Regularization term can be expressed as 

𝛺𝛺(𝑓𝑓𝑘𝑘) = 𝛾𝛾𝑇𝑇 +
1
2
𝜆𝜆‖𝑤𝑤‖2. 

(1) 

Parameters 𝛾𝛾 ∈ [0,1] and 𝜆𝜆 ∈ [0,1] are so-called called L1- and L2-regularization terms 

(Chen and Guestrin, 2016, p. 2). The previous equation (Eq. 1) shows that the L1-

regularization term controls the model’s complexity by penalizing models with a higher 

number of trees and the L2-regularization term the score distribution among leaves. 

4.3.4. Loss function 

The loss function describes the difference between models’ prediction 𝑦𝑦�𝑖𝑖 ∈ {0,1} and 

actual target 𝑦𝑦𝑖𝑖 ∈ {0,1} when 𝑖𝑖 ∈ {1, … ,𝑛𝑛}. In the context of gradient boosting, this loss 

function must be differentiable and convex. In this research we are going to use 

logarithmic loss function 

𝑙𝑙(𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖) = −[𝑦𝑦𝑖𝑖 𝑙𝑙𝑛𝑛 𝑝𝑝𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑛𝑛(1 − 𝑝𝑝𝑖𝑖)], 

where 𝑦𝑦𝑖𝑖 is a binary indicator of whether label is the correct classification for instance 𝑖𝑖 

and 𝑝𝑝𝑖𝑖 = 1
1+𝑒𝑒−𝑦𝑦�𝑖𝑖

  describes the model’s probability assigning label to instance 𝑖𝑖. We can

notice that in the logarithmic loss is just a logarithmic transformation of likelihood 

function of Bernoulli distribution and hence, by minimizing logarithmic loss function over 

a set of parameters we maximize the likelihood of the given observations (Painsky et al., 

2020, p. 1659). 
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4.3.5. Additive training 

The tree ensemble model includes functions as parameters. These functions contain the 

tree’s structure and the leaf weights, making it impossible to optimize using traditional 

optimization methods in the Euclidean space. Instead, the model is trained in an additive 

manner. We can write the prediction value 𝑦𝑦�𝑖𝑖
(𝑡𝑡) at step t as following

𝑦𝑦�𝑖𝑖
(0) = 0

𝑦𝑦�𝑖𝑖
(1) = 𝑓𝑓1(𝑥𝑥𝑖𝑖) = 𝑦𝑦�𝑖𝑖

(0) + 𝑓𝑓1(𝑥𝑥𝑖𝑖)

𝑦𝑦�𝑖𝑖
(2) = 𝑓𝑓1(𝑥𝑥𝑖𝑖) + 𝑓𝑓2(𝑥𝑥𝑖𝑖) = 𝑦𝑦�𝑖𝑖

(1) + 𝑓𝑓2(𝑥𝑥𝑖𝑖)

𝑦𝑦�𝑖𝑖
(𝑡𝑡) = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) = 𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)
𝑡𝑡

𝑘𝑘=1

. 

We want to choose a tree that minimizes our objective function at each step by adding 𝑓𝑓𝑡𝑡 

that most improves our model. In doing so, our objective function becomes the following 

ℒ (𝑡𝑡) = �𝑙𝑙(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖
(𝑡𝑡)) + �𝛺𝛺(𝑓𝑓𝑖𝑖)

𝑡𝑡

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

= ��𝑙𝑙(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)� + 𝛺𝛺(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

 

(Chen and Guestrin, 2016, p.3). 

Since the evaluation of the objective function is expensive, we can use to second order 

Taylor approximation to optimize the loss function and we get the following expression 

for the loss function 
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𝑙𝑙(𝑦𝑦,𝑦𝑦�) = 𝑙𝑙(𝑦𝑦,𝑦𝑦�𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑥𝑥)) 

= 𝑙𝑙(𝑦𝑦�𝑡𝑡−1) + 𝑙𝑙′(𝑦𝑦�𝑡𝑡−1)(𝑦𝑦� − 𝑦𝑦�𝑡𝑡−1) +
1
2
𝑙𝑙′′(𝑦𝑦�𝑡𝑡−1)(𝑦𝑦� − 𝑦𝑦�𝑡𝑡−1)2 

= 𝑙𝑙(𝑦𝑦,𝑦𝑦�𝑡𝑡−1) + 𝑙𝑙′(𝑦𝑦�𝑡𝑡−1)𝑓𝑓𝑡𝑡(𝑥𝑥) +
1
2
𝑙𝑙′′(𝑦𝑦�𝑡𝑡−1)�𝑓𝑓𝑡𝑡(𝑥𝑥)�

2
.

Second partial derivatives of the loss function provide more information about the 

direction of gradients and how to get to the minimum of our loss function. In practice, we 

take steps in the opposite direction of the gradient to find the global minimum of the 

objective function.  

We can achieve a more general expression for the loss function by substituting  

𝑔𝑔 = 𝑙𝑙′(𝑦𝑦�𝑡𝑡−1) and ℎ = 𝑙𝑙′′(𝑦𝑦�𝑡𝑡−1) and summing over all samples to get an approximation of 

our objective function 

ℒ (𝑡𝑡) ≃��𝑙𝑙�𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)� + 𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +

1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + 𝛺𝛺(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

. 

We can also remove the constant term, l(y, y�t−1), to obtain the following simplified 

objective at step t 

ℒ (𝑡𝑡) ≃��𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + 𝛺𝛺(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

. 

(2) 

The previous formula (Eq. 2) becomes our optimization goal for the new tree. A critical 

advantage of this definition is that the value of the objective function only depends on 𝑔𝑔 

and ℎ so we can optimize every any function using 𝑔𝑔 and ℎ as inputs (Chen and Guestrin, 

2016, p.3). 
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When the data is imbalanced, we can apply weights on the loss function, specifically on 𝑔𝑔 

and ℎ to make the model biased towards the minority class. In this research, we are using 

the ratio between majority class data instances and minority class instances as a weight. 

We would then define the objective function as 

ℒ (𝑡𝑡) ≃��𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡 ∙ 𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1
2
𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡 ⋅ ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + 𝛺𝛺(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

, 

(3) 

where 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁 𝑝𝑝𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑁𝑁𝑖𝑖𝑚𝑚 𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝 𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 𝑖𝑖𝑛𝑛𝑝𝑝𝑡𝑡𝑚𝑚𝑛𝑛𝑐𝑐𝑒𝑒𝑝𝑝
𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁 𝑝𝑝𝑜𝑜 𝑚𝑚𝑖𝑖𝑛𝑛𝑝𝑝𝑁𝑁𝑖𝑖𝑡𝑡𝑚𝑚 𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝 𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 𝑖𝑖𝑛𝑛𝑝𝑝𝑡𝑡𝑚𝑚𝑛𝑛𝑐𝑐𝑒𝑒𝑝𝑝

 . For simplicity, we 

are not going to include these weights in the later calculation and since these weights 

are constant, we can consider them to be a part of g and h. 

4.3.6. The Structure Score 

To define the leaf scores, we must also define the optimal weights for each leaf. After re-

formulating the tree model, we can write the objective function as following 

ℒ (𝑡𝑡) ≃��𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + 𝛾𝛾𝑇𝑇 +

1
2

𝑛𝑛

𝑖𝑖=1

𝜆𝜆�𝑤𝑤𝑚𝑚2
𝑇𝑇

𝑚𝑚=1

 

= ����𝑔𝑔𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑗𝑗

�𝑤𝑤𝑚𝑚 +
1
2
��ℎ𝑖𝑖 + 𝜆𝜆
𝑖𝑖∈𝐼𝐼𝑗𝑗

�𝑤𝑤𝑚𝑚2� + 𝛾𝛾𝑇𝑇
𝑇𝑇

𝑚𝑚=1

, 

where 𝐼𝐼𝑚𝑚 = {𝑖𝑖|𝑞𝑞(𝑥𝑥𝑖𝑖) = 𝑗𝑗} is the instance set of leaf 𝑗𝑗. After the re-formulation of the loss 

function, we can calculate the optimal weight 𝑤𝑤𝑚𝑚∗ of leaf 𝑗𝑗 by 

𝑤𝑤𝑚𝑚∗ = −
∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗

∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗
 . 

(4)
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To further avoid overfitting, we can scale the weight, 𝑤𝑤𝑚𝑚
∗ , by a parameter 𝜀𝜀 ∈ ]0,1] that 

effectively controls the learning rate of the process. Parameter 𝜀𝜀 reduces the influence of 

each tree and leaves space for future trees to improve the model. Sometimes the learning 

rate parameter is not enough to avoid overfitting, in which cases we can set an upper 

limit to the weight of a node. 

After determining the optimal weights for each leaf, we can calculate the corresponding 

optimal value of the loss function by 

ℒ̅ (𝑡𝑡)(𝑞𝑞) = −
1
2
�

�∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 �
2

∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗

𝑇𝑇

𝑚𝑚=1

+ 𝛾𝛾𝑇𝑇. 

ℒ̅ (𝑡𝑡)(𝑞𝑞) can be used as a scoring function to measure the quality of a tree structure 𝑞𝑞. 

This is like the impurity score (for example Gini-index) for evaluating decision trees, 

except it is derived for a wider range of objective functions (Chen and Guestrin, 2016, 

p.3).

4.3.7. Learning the tree structure 

Now that we can measure how good a tree is, we would like to enumerate all possible 

trees and pick the best one. However, this is intractable in practice since constriction of a 

decision tree is an NP-complete problem (Kotsiantis et al., 2006, p.163). So instead, we 

will optimize one level of the tree at a time by a greedy algorithm that starts from a single 

leaf and iteratively adds branches to the tree. 

In this research, we use categorical data, so the number of possible splits is considerably 

small, and we can use a greedy algorithm to find the optimal split points. However, in the 

case of continuous variables, the number of candidate split points can grow so large that 

the greedy algorithm is no longer possible to use. XGBoost solves this problem using 
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weighted quantile sketch and sparsity-aware split finding methods (Chen and Guestrin, 

2016, p. 4). 

We can evaluate the split by comparing the loss reduction achieved by each split that is 

commonly referred as gain. Let 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑅𝑅 be instance sets of left and right nodes after the 

split and 𝐼𝐼 = 𝐼𝐼𝐿𝐿⋃ 𝐼𝐼𝑅𝑅 then the loss reduction after the split is given by 

ℒ𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖𝑡𝑡 =
1
2
�
�∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝐿𝐿 �

2

∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝐿𝐿
+
�∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅 �

2

∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝑅𝑅
−

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼 )2

∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼
� − 𝛾𝛾. 

(5) 

revious formula is usually used in practice for evaluating the split candidates. It can be 

decomposed in four parts: 
�∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈𝐼𝐼𝐿𝐿 �

2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝐿𝐿
 is the score on the new left leaf, 

�∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅 �
2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝑅𝑅
 is the 

score on the new right leaf, 
(∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈𝐼𝐼 )2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼
  is the score on the original leaf and 𝛾𝛾 is the 

regularization on the additional leaf (Chen and Guestrin, 2016, p.3). We can see that if the 

gain is smaller than 𝛾𝛾, we should not add that branch. Most of the tree-based models use 

this pruning technique. 

There are two ways to add branches to the tree: leaf-wise and depth-wise methods. The 

leaf-wise method will choose the leaf that maximizes the loss reduction. On the other 

hand, the depth-wise method will finish the leaf growth at the same level for all leaves. As 

a result, the leaf-wise method tends to achieve lower loss and converge much faster, but 

it will also be more likely to overfit. 

4.3.8. Pruning 

Pruning is a data compression technique that reduces the size of decision trees by 

removing non-critical and redundant sections to classify instances. Pruning reduces the 

complexity of the final classifier, improving predictive accuracy by reducing overfitting. 
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XGBoost uses three different pruning techniques to control the size of the decision tree. 

Firstly, by controlling the loss reduction needed (Eq.5) for a new split. Secondly, by 

stopping the splitting process once the node reaches a certain level of purity, and thirdly, 

by stopping the splitting process once the depth of the tree reaches a certain level. 

In addition to previously the introduced γ parameter (Eqs. 4 and 1), XGBoost indirectly 

regulates the tree depth by controlling the minimum sum of weights needed in a child 

node by stopping splitting the nodes if the sum of weights is smaller than a certain 

threshold that we can control as a parameter. In practice, this means not splitting the 

node once it reaches a specific purity level. We can calculate the sum of instance 

weights in the node by summing the second partial derivatives over all points in the node. 

The third method is straightforward, and it works by setting a parameter that stops the 

splitting process once the depth of the tree grows too large. The other two methods 

indirectly control the tree depth, but they do not guarantee a limit for the depth of the 

tree. More complex trees allow more precise modeling of the data but, on the other hand, 

increase the risk of overfitting. 

4.3.9. Time complexity 

XGBoost can be considered computationally inexpensive since its time complexity is only 

𝑂𝑂(𝑡𝑡𝑡𝑡‖𝑥𝑥‖0 ∙ 𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛), when 𝑡𝑡 is the maximum depth and ‖𝑥𝑥‖0 is the number of non-missing 

entries in the data (Chen and Guestrin, 2016, p. 6). For comparison, training time for SVM 

is between 𝑂𝑂(𝑛𝑛2 ∙ 𝑚𝑚) and 𝑂𝑂(𝑛𝑛 3 ∙ 𝑚𝑚) depending on the training set and the set of 

hyperparameters, where 𝑚𝑚 is the number of features 
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4.4. Hyperparameter optimization 

Hyperparameter optimization is the problem of optimizing an objective function over 

some graph-structured configuration space. More formally, hyperparameter tuning 

problem can be given as follows 

𝑋𝑋∗ = 𝑎𝑎𝑎𝑎𝑔𝑔𝑥𝑥∈𝑆𝑆 𝑚𝑚𝑎𝑎𝑥𝑥[𝑓𝑓(𝑥𝑥)], 

where 𝑋𝑋∗ denotes the set of hyper-parameters that yield the highest value of the 

objective score (for example AUC),  𝑥𝑥 ⊂ ℝ𝑑𝑑 denotes the candidate set where d is the 

number of parameters and 𝑓𝑓(𝑥𝑥) is the objective score to minimize (Stuke et al., 2021, p. 

15). In general, hyperparameter tuning is essential to obtain the best prediction 

performance. 

This research will focus on sequential model-based optimization (SMBO) and tree-

structured parzen estimator (TPE) that are part of the Bayesian optimization framework. 

4.4.1. Bayesian optimization 

In an application where the true objective function is costly to evaluate, Bayesian 

methods can be used to approximate the objective function with a surrogate function 

that is cheaper to evaluate. The surrogate function is a probabilistic model 

approximating the true objective function based on given hyperparameters and their 

associated output values. Bayesian models select the next set of hyperparameters based 

on the acquisition function using the past evaluations of the surrogate function. 

Bayesian optimization methods can be differentiated at a high level by their surrogate -

and acquisition functions (Brochu et al., 2009, p. 2). 
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In addition to these methods, non-Bayesian alternatives for performing hyperparameter 

optimization include grid search, random search (Bergstra and Bengio, 2012), and 

particle swarm optimization (Kennedy and Eberhart, 1995). The problem with these 

approaches is that they are either computationally expensive or require good 

specification of the parameter space. In contrast, Bayesian methods are generally time-

efficient and do not require a good specification of the parameter space. Concerning this 

research both aspects are important since the data is large and the model has multiple 

parameters that are difficult to define. 

4.4.2. Sequential model-based optimization (SMBO) 

Sequential model-based optimization (SMBO) is a class of optimization algorithms that 

iterate between building a model of some unknown objective function and using the 

information from that model to query the next point in the domain of that function. This 

approach offers the prospects of interpolating performance between observed parameter 

settings and extrapolating to previously unseen regions of parameter space. 

Sequential model-based global optimization (SMBO) is a formalism of Bayesian 

optimization. The basic idea of SMBO to construct a surrogate function of the loss 

function and then use the subsequently obtained information to continuously optimize 

the alternative probability model to make it close to the actual distribution. SMBO 

algorithms keep track of past evaluation results which they use to form a probabilistic 

model mapping hyperparameters to a probability of a score on the objective function 

𝑝𝑝(𝑦𝑦|𝑥𝑥) where 𝑥𝑥 represents hyperparameters and 𝑦𝑦 the associated quality score. Each 

time the algorithm proposes a new set of candidate hyperparameters, it evaluates them 

with the actual objective function and records the result in a pair of score and 

hyperparameters (Hutter et al., 2011, p. 508-509). 

The surrogate function is a probabilistic model that approximates the true function based 

on given hyperparameter values and associated output values (Brochu et al., 2010, p. 3). 
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Various surrogate functions can be used in the SMBO context (Eggensperger et al., 

2013), but the model must define a predictive distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥). This distribution 

captures the uncertainty in the surrogate reconstruction of the objective function. In this 

research, we use a Tree-structured parzen estimator (TPE) as our surrogate function. 

Acquisition functions are mathematical techniques that guide how the parameter space 

should be explored during optimization. Acquisition functions balance the trade-off of 

exploiting a known high-performing result and exploring uncertain locations in the 

hyperparameter space (Eduardo et al., 2019, p. 51). The acquisition function used in this 

research is expected improvement. It defines the non-negative expected improvement 

over the best previously observed objective value at a given location. If we consider some 

model 𝑀𝑀 that is defined as 𝑓𝑓: 𝑋𝑋 → ℝ𝑁𝑁, expected improvement can be formally expressed 

as following 

𝐸𝐸𝐼𝐼𝑚𝑚∗(𝑥𝑥) = � 𝑚𝑚𝑎𝑎𝑥𝑥(𝑦𝑦−𝑦𝑦∗, 0)𝑝𝑝𝑀𝑀(𝑦𝑦|𝑥𝑥)𝑡𝑡𝑦𝑦
+𝑖𝑖𝑛𝑛𝑜𝑜

−𝑖𝑖𝑛𝑛𝑜𝑜
. 

Here 𝑦𝑦∗ is a threshold value of the objective function, x is the proposed set of 

hyperparameters, 𝑦𝑦 ∈ {0,1} is the actual value of the objective function using 

hyperparameters 𝑥𝑥 ⊂ ℝ𝑑𝑑 , and 𝑝𝑝(𝑦𝑦|𝑥𝑥) is the surrogate probability model expressing the 

probability of 𝑦𝑦 given 𝑥𝑥 (Jones et al., 1998, p. 471-472). Basically, expected improvement 

is the expectation that 𝑓𝑓(𝑥𝑥) will exceed some threshold 𝑦𝑦∗. 

4.4.3. Tree-structured Parzen Estimator (TPE) 

Tree-structured parzen estimator is a surrogate model for sequential model-based 

optimization. Compared to other Bayesian models that assume the form of the predictive 

distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥), TPE models it by 𝑝𝑝(𝑥𝑥|𝑦𝑦) and 𝑝𝑝(𝑦𝑦). TPE was selected as a surrogate 

function because it supports a wide variety of variables in parameter search space and is 

highly time-efficient, having a time complexity of 𝑂𝑂(𝑁𝑁). 



52 

Finnish workers’ Compensation Center | Publications 3/2022 

TPE models 𝑝𝑝(𝑦𝑦|𝑥𝑥) by replacing the distributions of the configuration prior with non-

parametric densities. As stated before, instead of directly representing 𝑝𝑝(𝑦𝑦|𝑥𝑥) it models it 

by 

𝑝𝑝(𝑦𝑦|𝑥𝑥) =
𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦)

𝑝𝑝(𝑥𝑥) . 

Using different observations {𝑥𝑥1,⋯ , 𝑥𝑥𝑘𝑘} in the non-parametric densities TPE can produce 

a variety of densities over the configuration space 𝑋𝑋. The TPE defines 𝑝𝑝(𝑥𝑥|𝑦𝑦) using two 

such densities 

𝑝𝑝(𝑥𝑥|𝑦𝑦) = � 𝑙𝑙
(𝑥𝑥) 𝑖𝑖𝑓𝑓 𝑦𝑦 < 𝑦𝑦∗
𝑔𝑔(𝑥𝑥) 𝑖𝑖𝑓𝑓 𝑦𝑦 ≥ 𝑦𝑦∗ 

, where 𝑙𝑙(𝑥𝑥)  is the density formed by using observations �𝑥𝑥(𝑖𝑖)� which corresponding loss 

𝑓𝑓(𝑥𝑥(𝑖𝑖)) was less than 𝑦𝑦∗ and 𝑔𝑔(𝑥𝑥) is the density using remaining observations. TPE 

depends on 𝑦𝑦∗ that is larger than the best-observed 𝑓𝑓(𝑥𝑥) so that some points can be used 

to form 𝑙𝑙(𝑥𝑥). The TPE algorithm chooses 𝑦𝑦∗ to be some quantile 𝛾𝛾 of the observed y 

values, so that 𝑝𝑝(𝑦𝑦 < 𝑦𝑦∗) = 𝛾𝛾 but no specific model for 𝑝𝑝(𝑦𝑦) is necessary. 

Based on the definition of 𝑝𝑝(𝑥𝑥|𝑦𝑦) we want to draw values from x that belong to 𝑙𝑙(𝑥𝑥) since 

this distribution consists only of values of x that yielded lower scores than the threshold. 

Next, we will present an alternative formalization of the expected improvement function 

in the context of TPE. By using the definition of 𝑝𝑝(𝑦𝑦|𝑥𝑥) we can express the expected 

improvement as follows 

𝐸𝐸𝐼𝐼𝑚𝑚∗(𝑥𝑥) = � (𝑦𝑦∗ − 𝑦𝑦)𝑝𝑝(𝑦𝑦|𝑥𝑥)𝑡𝑡𝑦𝑦
𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜
 

= � (𝑦𝑦∗ − 𝑦𝑦)
𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦)

𝑝𝑝(𝑥𝑥) 𝑡𝑡𝑦𝑦
𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜
. 
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Following the previous definition of 𝛾𝛾, g(x) and 𝑙𝑙(𝑥𝑥) we can define expected improvement 

in two parts where the prior density of scores (normalizing constant) is separated from 

the function: 

𝑝𝑝(𝑥𝑥) = � 𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑡𝑡𝑦𝑦 =
𝑖𝑖𝑛𝑛𝑜𝑜

ℝ
 𝛾𝛾𝑙𝑙(𝑥𝑥) + (1 − 𝛾𝛾)𝑔𝑔(𝑥𝑥), 

and 

� (𝑦𝑦∗ − 𝑦𝑦)𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑡𝑡𝑦𝑦
𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜
 

= 𝑙𝑙(𝑥𝑥)� (𝑦𝑦∗ − 𝑦𝑦)𝑝𝑝(𝑦𝑦)𝑡𝑡𝑦𝑦 = 𝛾𝛾𝑦𝑦∗𝑙𝑙(𝑥𝑥) − 𝑙𝑙(𝑥𝑥)
𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜
� 𝑝𝑝(𝑦𝑦)𝑡𝑡𝑦𝑦
𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜
. 

Finally combining both parts we the get an alternative formalization for expected 

improvement as: 

𝐸𝐸𝐼𝐼𝑚𝑚∗(𝑥𝑥) =
𝑦𝑦∗𝑙𝑙(𝑥𝑥)(𝛾𝛾 − 1)∫ 𝑝𝑝(𝑦𝑦)𝑡𝑡𝑦𝑦𝑚𝑚∗

−𝑖𝑖𝑛𝑛𝑜𝑜

𝛾𝛾𝑙𝑙(𝑥𝑥) + (1 − 𝛾𝛾)𝑔𝑔(𝑥𝑥) ∝ �𝛾𝛾 +
𝑔𝑔(𝑥𝑥)
𝑙𝑙(𝑥𝑥)

(1 − 𝛾𝛾)�
−1

. 

From the final expression, we can see that to maximize expected improvement, we need x 

with a high probability under 𝑙𝑙(𝑥𝑥) and low probability under 𝑔𝑔(𝑥𝑥) because this distribution 

is based only on values of 𝑥𝑥 that yielded lower scores than the threshold. The tree 

structured form of 𝑙𝑙(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) makes it easy to draw many candidates according to 

𝑙𝑙(𝑥𝑥) and evaluate them according to the proportion of 𝑔𝑔(𝑥𝑥) and 𝑙𝑙(𝑥𝑥). On each iteration, 

the algorithm returns the candidate 𝑥𝑥∗with the biggest expected improvement (Bergstra 

et al., 2011, p. 2550). 
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4.4.4. XGBoost parameters 

XGBoost has multiple hyperparameters that must be set manually to build the 

classification model. This part will cover all the parameters we optimize or change from 

their default values during our research. 

Table 2: XGBoost parameters 

 Parameter name Search space Value type Reference Explanation 

eta ]0,1] Float 

Eq. 4, 

p. 32

Step size shrinkage used in 

update to prevents overfitting 

gamma ]0,1] Float 

Eq. 5, 

p. 33–34

Minimum loss reduction 

required to make a further 

partition on a leaf node of the 

tree 

max_depth [1, 15] Integer p. 34 Maximum depth of a tree 

min_child_weight ]0,1] Float p. 34

Minimum sum of weights 

needed in a child node 

lambda ]0,1] Float 

Eq. 1. 

p. 29

L2 regularization term on 

weights 

alpha ]0,1] Float 

Eq. 1, 

p. 29

L1 regularization term on 

weights 

max_delta_step ]0,1] Float 

Eq. 4, 

p. 32

Maximum weight of a tree 

node 

grow_policy 

Loss guide, 

depthwise Categorical p. 34

Controls the way new nodes 

are added to the tree 

scale_pos_weight 12.3 Float 

Eq. 3, 

p. 32

Control the balance of 

positive and negative weights 
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4.5. Imbalance learning 

An imbalanced classification problem appears when the target class has an uneven 

distribution of observations. Imbalanced classification poses a challenge for predictive 

modeling as most of the classification algorithms are designed to assume an equal 

number of examples for each class, resulting in models with good predictive power over 

the majority class but with the expense of poor predictive power over the minority class. 

To avoid this problem, we need to construct classifiers that are biased toward the 

minority class without harming the accuracy of the majority class. 

Many techniques have been developed to answer the problem of imbalance 

classification. These techniques can be categorized into four main groups, depending on 

how they deal with the problem. 

Algorithm level approaches try to adapt existing classifier learning algorithms to be 

biased toward the minority class. To perform the adaptation a special knowledge of both 

the corresponding classifier and the application domain is required to comprehend why 

the classifier fails when the class distribution is uneven. 

Data level approaches aim at rebalancing the class distribution by resampling the data. 

The modification of the learning algorithm is avoided since the effect caused by 

imbalance is decreased with a preprocessing step. However, some commonly used 

rebalancing algorithms, such as SMOTE (Chawla et al., 2002), are computationally 

expensive, highlighted in hyperparameter optimization. 

Cost-sensitive learning framework falls between data and algorithm level approaches. 

The classifier is biased toward the minority class by assuming higher misclassification 

costs for the minority class and seeking to minimize the total cost errors of both classes. 

Cost-sensitive learning is computationally inexpensive, making it attractive in 
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hyperparameter optimization and dealing with large data quantities. Also, cost-sensitive 

learning does not require further assumptions about the data or our prediction algorithm. 

Ensemble-based methods usually consist of a combination between an ensemble 

learning algorithm and one of the techniques above. When using cost-sensitive 

ensembles, the base classifier is modified to accept costs in the learning process 

(Fernández et al., 2018, p. 22). In this research, we are using the cost-sensitive ensemble-

based method since our model is an ensemble model, but the reasoning is based on the 

cost-sensitive approach. 

4.5.1. Metrics for imbalance learning 

This part will cover some of the most common metrics for binary imbalanced 

classification problems since evaluating the imbalance classification results require 

specific consideration for the metrics being used. For example, the performance of 

machine learning algorithms is typically evaluated using predictive accuracy. However, 

accuracy is not an appropriate metric when the data is imbalanced because the model 

can achieve high accuracy by only classifying all data instances as belonging to the 

majority class. 

4.5.1.1. Confusion matrix 

The confusion matrix is a useful tool when evaluating a discrete classifier. In the binary 

case, we denote the number of correctly classified positive and negative instances by 

true positives (TP) and true negatives (TN). False negatives (FN) stand for the number of 

instances predicted to be non-serious but are serious accidents, while the false positives 

(FP) are the number of instances falsely classified as serious accidents. The confusion 

matrix reveals how well the classifier predicts each accident outcome (Townsend, 1971, 

p. 41).
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4.5.1.2. ROC-curves and AUC 

The Receiver Operating Characteristic (ROC) curve is a standard technique for 

summarizing classifier performance over a range of trade-offs between true positive and 

false positive error rates (TPR and FPR). Probabilistic classifiers need a threshold to 

make a final decision for each class. Therefore, a different discrete classifier is obtained 

for each possible threshold, with a different TPR and FPR. ROC curve is obtained by 

considering all these possible thresholds, putting their corresponding classifiers in the 

ROC space, and drawing a line through them. 

TPR is also known as recall and can defined as 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
. 

FPR can be defined together with precision that is defined as 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
, so then 

𝐹𝐹𝑇𝑇𝑇𝑇 = 1 −
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
. 

ROC curve essentially tells what level of FPR is required to achieve a certain TPR. ROC 

values are independent of the class distribution, making them helpful in evaluating 

unbalanced problems. The area under the curve (AUC) is a traditional performance metric 

for a ROC curve, and it measures the area between the x-axis and the ROC curve. 

Classifiers that require a lower FPR for each threshold of TPR acquire a higher AUC 

number (Fan, 2006, p. 19-20). AUC is used in this research to compare different 

hyperparameter configurations’ performance. 
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5. Results

In this part, we will explain the model selection process, hyperparameter optimization 

results, and the results of our final model. 

5.1. Model selection 

Since hyperparameter optimization is computationally expensive, we completed our 

initial analysis with only 100 000 data instances (70:30 training test split) and decided to 

use the best-performing model with the complite data.  

The data consist of mostly categorical variables that are converted to a numeric format 

before applying the classification algorithm. Therefore, categorical variables are 

converted to dummy variables, and other categorical variables are label-encoded. All the 

variables in the data set are categorical variables except age, an ordinal variable. After 

conversion, we had 174 variables. 

The fundamental consideration for model selection was the capacity to handle 

categorical data and the capability for rule-based pattern extraction. We also only 

considered algorithms with a solid theoretical grounding that can represent any level of 

complexity and are flexible in that no structures are imposed a priori that might conceal 

the actual underlying structure of the data. Requirement for the model’s capability for 

rule-based pattern extraction ruled out the use of the artificial neural network (ANN) 

approaches even though ANN has enjoyed some success in previous research. 

Based on our model requirements, we chose three models for the initial analysis: Suppor 

vector machine (SVM) (Cortes et al., 1995), complement naive Bayes (CNB) (Rennie et al., 

2003), and XGBoost. Firstly, we decided to use SVM since it has been successfully 

applied in previous research of accident outcome prediction. Secondly, we chose 
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complement naive Bayes (CNB) because it works with unbalanced data and serves as a 

good baseline model for our approach to the problem of unbalanced data. Lastly, we 

considered XGBoost, since its success in numerous machine learning competitions 

(Qingyun et al., 2016), and it has not yet been applied to accident outcome prediction. 

Finally, candidate models were compared based on ROC curves. 

Figure 11. ROC curves of the candidate models. On the x-axis, FPR and on the y-axis, TPR. 

All models have similar performance, but XGBoost slightly overperforms other models 

based on AUC. XGBoost practically dominates CNB and SVM has a slightly better 

performance in predicting non-serious accidents (TN). In addition, XGBoost is the most 

balanced model in predicting majority and minority class instances (Fig. 11). Based on 

these results and the fact that the training time for XGBoost is several times shorter than 

with SVM, we choose XGBoost as our final model. 
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5.2. Training the model 

Data was divided into two parts of the training set and the test set by proportions of 7:3, 

respectively. The training set is used to train the model, and the test set is used to 

validate the model’s results. 

The model was trained with the training set using hyperparameter optimization with 200 

iterations. After each iteration, the performance was measured using the average AUC 

between stratified 10-fold cross-validation splits. After finding the best model, the results 

were again validated using stratified 10-fold cross-validation. Stratified n-fold cross-

validation (Scikit-learn, 2022) begins by shuffling the test set randomly and splitting it 

into n subsets containing approximately the same data instances. Each of these subsets 

was held as a test set while the remaining were used as a training set. This process was 

repeated with all the subsets, and models’ evaluation metrics were calculated as 

averages between all subsets. Cross-validation helps to mitigate the problem of 

randomness in the validation results. 

5.2.1. Hyperparameter optimization 

This part will cover hyperparameter optimization results and the parameter values that 

resulted in the best performance in terms of AUC. 
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Figure 12. Hyperparameter optimization results. On the y-axis AUC and on the x-axis iterations. 

The Red line represents the results of different iterations, and the blue dot represents the best 

result among all iterations. 

As we can notice, most hyperparameter combinations generate results generally close to 

each other, implying that the model is quite robust for different parametrization. 

However, some iterations deviate greatly form the best results caused by an extreme 

value of some of the pruning parameters (Fig. 12). 

Furthermore, the results seem to stabilize with further trials indicating results reaching 

the optimal parametrization. The best result was AUC of 0.7491 and the ceiling of the 

models seems to be AUC of around 0.75. 
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Table 3: Parameter values 

 Parameter Value of the model Default value 

eta 0.91390 0.3 

gamma 0.00864 0 

max_depth 11 6 

min_child_weight 0.12736 1 

lambda 0.01239 1 

alpha 0 0 

max_delta_step 0.25630 0 

grow_policy Loss guide Depthwise 

scale_pos_weight 12.3 1 

We notice that all the parameters deviate from the default values except alpha. Especially 

eta, min child weight and max depth parameter differ significantly from the default values 

(Table 3). Generally, we can say that parameters controlling overfitting are most affected, 

probably caused by the depth of the decision tree that deviates significantly from the 

default value. 

5.3. Evaluation of the results 

This part will display the results of the predictive model in terms of evaluation metrics, 

feature importance, decision rules and wrongly classified non-serious accidents. 
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5.3.1. Evaluation metrics 

In this research we use AUC, accuracy, recall, precision, and confusion matrix for 

evaluating the results. 

Table 4: Stratified 10-fold validation results 

 Metrics AUC Accuracy Recall Precision 

Split 1 0.7460 0.7664 0.7221 0.2030 

Split 2 0.7447 0.7686 0.7165 0.2038 

Split 3 0.7452 0.7699 0.7162 0.2047 

Split 4 0.7447 0.7668 0.7186 0.2027 

Split 5 0.7506 0.7700 0.7278 0.2067 

Split 6 0.7497 0.7661 0.7305 0.2042 

Split 7 0.7529 0.7720 0.7305 0.2087 

Split 8 0.7567 0.7721 0.7385 0.2102 

Split 9 0.7573 0.7722 0.7397 0.2104 

Split 10 0.7454 0.7684 0.7183 0.2039 

SD 0.0047 0.0022 0.0084 0.0028 

Mean 0.7493 0.7693 0.7259 0.2058 

We notice that the AUC of our training model is close to the validation results. 

Furthermore, the validation results have a low variation implying that the model is not 

overfitting (Table 4). Even though the mean accuracy of 77% cannot be considered 

excellent, these results are similar to previous research on accident outcome prediction 

using structural data (Anurag et al., 2020). 
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Table 5: Confusion matrix 

Label Non-serious (Predicted label) Serious (Predicted label) 

Non-serious (True label) 0.7728 0.2272 

Serious (True label) 0.2741 0.7259 

The model predicts non-serious accidents more accurately than serious accidents, but 

not much considering the unbalanced nature of the data. For example, we notice that the 

model predicts decently non-serious accidents with an accuracy of around 77% but 

serious accidents with less than 73% accuracy (Table 5). 

5.3.2. Feature importance 

Feature importance was calculated as the sum of loss reduction across all splits the 

feature is used. Here we refer to loss reduction as gain. 

It seems features that have a significant disproportion between serious -and non-serious 

accidents are more likely to appear among more important features (Fig. 13). On the 

other hand, features that rarely appear in the data have lesser importance regardless of 

the distribution of serious -and non-serious accidents. It is also clear that features 

describing the outcome of the accident are the most prevalent since 21 out of 27 most 

important features belong to either injury type or body variable, and features of those 

variables cover 84% of all gains (Table 6). 
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Figure 13. Normalized feature importance’s of features that cover 85% of the total gains. On the 

x-axis proportions and on the y-axis features.
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Table 6: Proportional sum of gains of all features 

Variable Proportion of gains 

Injury type 0.64 

Body part 0.2 

Deviation 0.05 

Material agent 0.05 

Working process 0.03 

Contact mode of injury 0.02 

Physical activity 0.01 

Gender 0 

Age 0 

Injury type is by far the most important variable (Table 6), and all its features are included 

among the most important features except shock (INJURY_100). Wounds and superficial 

injuries (INJURY_010) and bone fractures (INJURY_020) are by far the most important 

features among all the features (Fig. 13). In most cases, wounds and superficial injuries 

implicate a non-serious accident and bone fractures a serious accident. Even though 

traumatic amputations (INJURY_040) are over 20 times more common among serious 

than non-serious accidents, they appear so rarely (Fig. 8) that their importance is 

significantly lesser than wounds, superficial injuries, and bone fractures (Fig. 13). 

The body part is the most represented variable among the most important features and 

the second most important variable (Table 6). Eye (BODY_13), shoulder and shoulder 

joints (BODY_51), spine, and vertebra (BODY_31) are the most important features 

belonging injured body part variable (Fig. 13). Eye injuries implicate a non-serious 
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accident, and shoulder and shoulder joints and back, spine, and vertebra in the back 

injuries’ serious accidents. 

The deviation-variable’s most important feature is overflow, overturn, leak, flow, 

vaporization, or emission (DEVIATION_20). Other features of the deviation variable are 

slipping, stumbling, and falling (DEVIATION_50) and body movement under or with 

physical stress (DEVIATION_70). Body movement under or with physical stress implies a 

non-serious accident and slipping, stumbling, falling and overflow, overturn, leak, flow, 

vaporization, or emission a serious accident (Fig. 13). 

Material agent associated with the mode of injury-variable has only one feature, fixed 

machine tools for sawing (MATERIAL_2711), representing it even though around 1/3 of 

the overall features belong to that variable (Fig. 13). Fixed machine tools for sawing as a 

material agent implicate a serious accident. Because of the large number of features, the 

material agent associated with the mode of injury variable has the third-highest total 

gains even though individual features are insignificant (Table 6).  

Direct contact with electricity receipt of electrical charge in the body 

(CONTACT_MODE_12) is the only feature representing the contact mode of the injury 

(Fig. 13). Direct contact with electricity receipt of electrical charge in the body implicates 

a non-serious accident. Contact mode of injury is one of the least important variables, 

with its features totaling only 2% of all gains (Table 6). Physical activity is also one of the 

least important variables and is not even represented among important features. 

Accordingly, features of physical activity amount to only 1% of the total gains (Table 6). 

The low importance of physical activity variable corresponds to our earlier speculation 

about its low importance (Fig. 5). 

Among variables describing the injured person, age (AGE) and male gender (GENDER_M) 

were included (Fig. 13), but the working process was not. Age and gender variables 

amount to only around 1% of the total gains (Table 6); however, age is a nominal variable, 
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and gender has only one feature. On the other hand, the working process variable 

amounts to more than 3% of the total gains, but mostly because it has multiple features. 

5.3.3. Decision rules 

One of the strengths of decision tree-based models is the capability to visualize the tree 

model and the decision rules behind the prediction. Leaf nodes represent the predicted 

value reached by following the decision rules defined by the model. Leaf node values can 

be converted to a probability score using the logistic function. The leaves with a 

probability score of at least 0.5 are classified as serious accidents and others as non-

serious accidents. 

Features with higher feature importance generally appear higher in the decision tree, but 

the feature importance does not entirely decide the relevance among the decision rules. 

For example, even though variables working process and physical activity are do not 

appear important in terms of loss reduction, they seem pretty frequently in the decision 

tree although on the lower level of the tree. The same applies to the variable describing 

the material agent associated with the injury; however, this variable has multiple times 

more features than other variables. 

Since the decision tree is quite complex, we are only focusing on the higher levels of the 

tree, and simple decision rules in our analysis, mainly concerning features belonging to 

injury type or injured body part variable.  

The wounds and superficial injuries feature is on the highest level of the decision tree. In 

most cases, the wounds and superficial injuries indicate a non-serious accident except 

when the material agent associated with the injury is fixed machine tools for sawing. 

When the material agent associated with the injury is something else, only very complex 

decision rules lead to the precision of a serious accident. 
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In the absence of wounds and superficial injuries, most other injury types indicate a 

serious accident, including dislocations, sprains, or strains, traumatic amputations, 

broken bones, shock, effects of sound, vibration, or pressure, drowning and asphyxiation 

and multiple injuries. Accidents with other injuries require further conditions to be 

predicted as serious accidents. For example, concussion or internal injuries are 

considered serious when the material agent associated with the injury is mobile ladders 

and burns, scalds, or frostbites when multiple sites of lower extremities of the body are 

affected. 

Body part-variable also appears often on the higher levels of the decision tree. When 

injury type is not wounds, and superficial injuries spine and vertebra injuries, implicate a 

non-serious accident in most cases except when appearing together with a bone 

fracture. The same applies when other back parts are injured. Also, shoulder or shoulder 

joint injuries imply non-serious accidents except when age is over 35 years, and the 

contact mode is a collision with an object in motion. 

On the lower level of the decision tree, some of the decision rules do not appear sensible. 

For example, when the injury type is poisonings or infection, injured body part is not leg 

or knee, spine or vertebra or other back part, and the material agent associated with the 

injury is a land vehicle the accident is classified as a serious accident. These results may 

imply that a simpler decision tree could describe the phenomena of workplace accidents 

better, even with the loss of prediction accuracy. 

5.3.4. Wrongly classified non-serious accidents 

This part will analyze the distribution of absence from work of wrongly classified non-

serious accidents compared to the validation set distribution (Fig. 10). We are interested 

in knowing how much wrongly classified non-serious accidents deviate from the 

definition of serious accidents in terms of absence from work, since it could have 

implication on the model’s financial benefits. We are only concerned about the wrongly 



70 

Finnish workers’ Compensation Center | Publications 3/2022 

classified non-serious accident since an incorrect prediction of a serious accident does 

not affect the normal insurance claim process. 

Figure 14. Distribution of wrongly classified non-serious accidents in terms of absence from 

work. The upper plot describes data instances predicted to be serious, but that are non-serious 

accidents, proportional to the distribution of the validation set where the y-axis represents 

proportions and x-axis absence from work. The lower plot describes the distribution of data 

instances predicted to be serious, but that are non-serious accidents, where the y-axis represents 

frequency and x-axis absence from work. 

We would hope that the distribution of wrongly classified data instances would be 

skewed towards the threshold with non-serious and serious accidents more than they 

appear in the validation set. For example, the wrong prediction of a serious accident can 

be useful in preventing prolonged absence from work even if the actual accident would 

be only 28 days, thus lowering the misclassification cost of the model. 
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With wrongly classified serious accidents, we see that the 15–30-day category is more 

than twice as common among the wrongly classified data instances (Fig. 14) compared 

to the whole data (Fig. 10) and for 7-14 days more than 1.5 times. Even though these 

results are encouraging, the 0–3-day category is still the most frequent, and the 15–30-

day category represents only 16% of the wrongly classified non-serious accidents. 

Therefore, even if all the wrongly classified non-serious accidents belonging to the 15–

30-day category would lead to the same financial benefits as correctly classified serious 

accidents, the expected financial improvement per accident would only be 0.16 ⋅ 𝐹𝐹𝑇𝑇𝑇𝑇 ⋅ 

𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑐𝑐𝑙𝑙𝑎𝑎𝑡𝑡 = 0.036 ⋅ 𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑐𝑐𝑙𝑙𝑎𝑎𝑡𝑡. Thus, we will not analyze the 

distribution more precisely (day level) or use this information when calculating the 

financial benefits of the model.
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6. Conclusion

This part will present the research summary, practical implications of the results, 

limitations of the research, and suggestions for further research. 

6.1. Research summary 

In this research, we used the TPE method to optimize the XGBoost model to predict 

workplace accident outcomes based on the accident notices delivered to the insurance 

companies in Finland. Accident outcomes were divided into serious and non-serious 

accidents based on the absence from work resulting from the accident. Cases where the 

absence from work was more than 30 days, were considered serious. 

Wounds and superficial injuries and bone fractures were found to be the most important 

features predicting the workplace accident outcome with wounds and superficial injuries, 

implying in most cases a non-serious accident and bone fractures serious accident. 

Overall injury variable was found to be most important ESAW-variable together with body 

The model could predict serious accidents with an accuracy of 73% and non-serious 

accidents with an accuracy of 77%. 

6.2. Practical implications 

This part will display the models’ potential financial benefits for the insurance company. 

We will not approximate financial benefits concerning all workplace accidents since there 

are too many unknown variables. Instead, we define break-even points when the model is 

profitable for individual cases. 
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The financial benefits of the model are affected by how many days it can advance the 

workers returning to work, the amount of daily allowance paid to the injured person, and 

the cost of the administrative process. Earlier return to work will also decrease other 

costs associated with workplace accidents but are challenging to define, so we don’t 

consider them. 

When determining the cost savings of the model, we are only concerned about the 

prediction accuracy of serious accidents since a correct prediction of a non-serious 

accident does not affect the normal insurance claim process. The expected savings of 

the model can be calculated as follows 

𝐸𝐸[𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑔𝑔𝑎𝑎] = 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ (𝐴𝐴 ∙ 𝐷𝐷 − 𝐶𝐶𝐴𝐴) − 𝐹𝐹𝑇𝑇𝑇𝑇 ⋅ 𝐶𝐶𝐴𝐴, 

where 𝐴𝐴 =  𝑡𝑡𝑎𝑎𝑖𝑖𝑙𝑙𝑦𝑦 𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎, 𝐷𝐷 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛 𝑡𝑡𝑙𝑙 𝑤𝑤𝑙𝑙𝑎𝑎𝑤𝑤 𝑖𝑖𝑛𝑛 𝑡𝑡𝑎𝑎𝑦𝑦𝑎𝑎 and 𝐶𝐶𝐴𝐴 =

𝑐𝑐𝑙𝑙𝑎𝑎𝑡𝑡 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑎𝑎 𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑙𝑙𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎. 

Model shortens the administrative process by helping focus on cases where the risk of 

prolonged absence from work is elevated, but it is impossible to say precisely how many 

days this could shorten the absence from work of the injured person. For this reason, we 

examine different cost scenarios depending on different daily allowances and recovery 

times. 

The amount of daily allowance depends on the injured person’s income, so it makes 

sense to examine the benefits of the model for different income groups. Therefore, we 

defined three different income groups: 1) the lowest-earning 25% with a daily allowance 

of 70 euros, 2) the median with the daily allowance of 99 euros, and 3) the highest-

earning 25% with a daily allowance of 138 euros (Statistic Finland, 2021). 

Cost of administrative process incurs when the insurance company contacts the injured 

person and medical service providers to accelerate the diagnosis -and treatment process. 
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We do not know the exact cost of the administrative process, but we can define the 

thresholds when the model is profitable. 

Figure 15. Break-even points for the administrative cost. Y-axis represents administrative cost in 

euros and x-axis earlier return to work in days. 

When the return to work is advanced by only one day, administrative cost needs to be 

under 100 euros for the model to be profitable, and the difference between income 

groups is relatively small. However, with the increase of days of earlier return, the 

differences between different income groups become more evident. For example, when 

the cost of the administrative process is 200 euros model is profitable for the highest 

income group if the injured person returns to work two days earlier, for the median 

income group three days, and for the lowest income group four days (Fig. 15). 

6.3. Limitations of the research 

This research has some limitations concerning the chosen methodology, especially 

hyperparameter optimization, imbalance learning, and approach to serious and non-

serious accidents. 
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The Bayesian approach to hyperparameter optimization cannot guarantee that the 

parameter values obtained after the optimization process would lead to the best possible 

performance of the model. In other words, it is possible that with further iterations, more 

optimal parameters values could be discovered. 

It is also difficult to evaluate the effectiveness of our approach to the problem of 

imbalanced data compared to other methods. However, even though the data level 

approach is infeasible with the computer recourses available for this study, it could yield 

better results. 

The definition of a serious accident in this research is arbitrary and based on the time 

frame for the administrative process set by the Finnish Accidents at Work and 

Occupational Diseases Act. Therefore, the definition used in this research does not 

necessarily reflect the optimal way to divide accidents into serious and non-serious 

accidents to advance the injured persons’ recovery. 

6.4. Suggestions for further research 

Suggestions for future research consist of ways to binary classification model developed 

in this research, other approaches to the problem of binary classification, and other 

approaches to the problem of predicting workplace accident outcomes. 

The model could be more useful if capable of predicting absence from work on a more 

detailed level. However, since the prediction accuracy is quite poor even with the binary 

classification, it is unlikely that increasing the predicted classes or predicting the length 

of the absence from work in days would lead to satisfactory results. Based on the results, 

significant improvements cannot be made to the prediction accuracy by relying on the 

ESAW variables even with other predictive algorithms. However, earlier research (Anurag 

et al., 2020) has shown that applying natural language processing (NLP) techniques on 
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the written accident descriptions could yield better results than structural data and thus 

enable these approaches. 

However, some possible improvements are possible with the structural data. These 

improvements concern combining features and, on the other hand, including additional 

variables. 

Several features of the material agent associated with the mode of injury-variable that 

represent structures above ground level are significantly more common among serious 

accidents than non-serious accidents. However, only two of those features appear in the 

decision rules even though the accident mechanism is intuitively quite similar. Thus, 

some of these features could be combined to reduce the features leading to a simpler 

decision tree with more sensible decision rules. 

It could be argued that the occupation affects the seriousness of the injury. For example, 

a broken finger for a violist has more serious consequences than a broken finger for a 

truck driver. The working process variable describes the occupation on some level but 

maybe not well enough. Variables describing the occupation more precisely were 

discarded since it limited the available data considerably, but possible improvement 

could be achieved by including variables that describe the occupation more accurately. 
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Appendix A: Feature descriptions of the variables 

Table A1: Feature description of the Material agent associated with the mode of injury variable 

Code Material agent 

1100 Building components including doors, walls, and intentional obstacles (windows, etc.) 

1201 Fixed stairs, roofs, terraces, doors, windows, and quays 

1210 Fixed ladders 

1219 Other fixed structures above ground level 

1221 Mobile ladders 

1222 Temporary supports 

1223 Mobile scaffolding 

1229 Other structures above ground level 

1230 Temporary structures including scaffolding and hanging racks 

1240 Drilling platforms scaffolding or barges 

1229 Other structures above ground level 

1310 Excavations, trenches, wells, pits, escarpments, or garage pits 

1320 Underground areas or tunnels 

1330 Underwater environments 

1399 Others structures below ground level 

2100 Pipe networks for the supply and distribution of materials 

2200 Motors or power generators (thermal, electric, radiation) 

2300 Powered hand tools 

2400 Not powered hand tools 

2500 Hand tool (source of power unknown) 

2601 Portable or mobile machines for extracting materials or working the ground 

2602 Portable or mobile machines for working the ground in farming 

2603 Portable or mobile machines for extracting materials or working the ground 

2604 Floor cleaning machines 

2699 Other portable or mobile machines or equipment 
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2701 Fixed machines for extracting materials or working the ground 

2702 Fixed machines for crushing, pulverising, filtering, separating, mixing, blending or materials 

2703 Fixed machines for chemical processes 

2704 Fixed machines for hot processes (ovens, driers, kilns) 

2705 Machines for cold processes 

2706 Other machines for preparing raw materials 

2707 Fixed forming machines for pressing or crushing 

2708 Fixed forming machines for calendering, rolling or cylinder presses 

2709 

Fixed forming machines by injection, extrusion, blowing, spinning, moulding, melting, or 

casting 

2710 

Fixed machine tools for planning, milling, surface treatment, grinding, polishing, turning, or 

drilling 

2711 Fixed machine tools for sawing 

2712 Fixed machine tools for cutting, splitting, or clipping 

2713 Fixed machines for cleaning, washing, drying, painting, or printing 

2714 Fixed machines for galvanising or electrolytic surface treatment 

2715 

Assembling machines for welding, gluing, nailing, screwing, riveting, spinning, wiring, sewing, 

or stapling 

2716 Packing machines 

2717 Miscellaneous monitoring or testing machines 

2718 Other machines used in farming 

2799 Other known fixed or mobile machines and equipment 

2801 Lifting equipment including slings, hooks, and ropes 

2802 Elevators, lifts, hoists, bucket elevators and jacks 

2803 Fixed belts, escalators, cableways, and conveyors 

2811 Mobile machines for conveying but not lifting 

2812 Pushcarts 

2813 Mobile handling devices, handling trucks, barrows, or pallet trucks 

2814 Containers with wheels 

2815 Pallet jack 

2816 Forklift 
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2819 Other conveying, transport, or storage systems 

2830 Mobile silos, tanks, vats, and containers 

2840 Handling trucks, barrows, and pallet trucks 

2850 Shelves 

2860 Miscellaneous small and medium-sized packaging 

2899 Other known conveying, transport, and storage systems 

3100 Land vehicles 

3200 Other vehicles 

4100 Materials, objects, products, machine, vehicle components, debris, or dust 

4200 Chemical, explosive, radioactive or biological substances 

4300 Safety devices and equipment 

4400 Office equipment, personal equipment, sports equipment, weapons, or domestic appliances 

5100 Human-beings, animals, or plants 

5200 Bulk waste 

5300 Physical phenomena and natural elements 

9999 Other material agents 

XX Missing values 
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Table A2: Feature description of the Injury type variable 

Code Injury type 

010 Wounds and superficial injuries 

020 Bone fractures 

030 Dislocations, sprains, and strains 

040 Traumatic amputations 

050 Concussion and internal injuries 

060 Burns, scalds, and frostbites 

070 Poisonings and infections 

080 Drowning and asphyxiation 

090 Effects of sound, vibration, and pressure 

100 Effects of temperature extremes, light and radiation 

110 Shock 

120 Multiple injuries 

999 Other specified injuries 

XX Missing values 

Table A3: Feature description of the Physical activity variable 

Code Physical activity 

10 Operating machine 

20 Working with hand-held tools 

30 Driving/being on board a means of transport or handling equipment 

40 Handling of objects 

50 Carrying by hand 

60 Movement 

70 Presence 

99 Other specific physical activities 

XX Missing values 

Table A4: Feature description the of Working process variable 
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Code Working process 

11 Production, manufacturing, or processing 

12 Storing 

19 Other production, manufacturing, processing, or storing 

21 Excavation 

22 New construction of buildings 

23 New construction of civil engineering, infrastructures, roads, bridges, dams, or ports 

24 Remodelling, repairing, extending, or building maintenance 

25 Demolition 

29 Other group of excavation, construction, repair, or demolition 

31 Agricultural type of work working the land 

32 Agricultural type work with vegetables or horticultural 

33 Agricultural type work with live animals 

34 Forestry type work 

35 Fish farming or fishing 

39 Other agricultural type work, forestry, horticulture, fish farming or work with live 

animals 

41 Service, care, or assistance 

42 

Intellectual work including teaching, training, data processing, office work, organising 

or managing 

43 Commercial activity including buying, selling and associated services 

49 Other service provided to enterprise and/or to the public 

51 Setting up, preparation, installation, mounting, disassembling, or dismantling 

52 Maintenance, repair, tuning or adjustment 

53 Cleaning working areas 

54 Waste management, disposal, waste treatment of all kinds 

55 Monitoring or inspection of manufacturing procedures 

59 Other work 
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61 Movement, including aboard means of transport 

62 Sport or artistic activity 

63 Sailoring 

69 Other movement, sport, or artistic activity 

99 Other working processes 

XX Missing values 

Table A5: Feature description the of Deviation variable 

Code Deviation 

10 Operating a machine 

20 Deviation by overflow, overturn, leak, flow, vaporization, or emission 

30 Breakage, bursting, splitting, slipping, fall or collapse of material agent 

40 Loss of control of machine, means of transport, handling equipment, hand-held tool, 

object, or animal 

50 Slipping, stumbling, and falling 

60 Body movement without any physical stress 

70 Body movement under or with physical stress 

80 Shock, fright, violence, aggression, threat, or presence 

99 Other deviations 

XX Missing value 

Table A6: Feature description of the Injured body part variable 

Code Injured body part 

11 Head, brain and cranial nerves and vessels 

12 Facial area 

13 Eye(s) 

14 Ear(s) 

15 Teeth 
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18 Head, multiple sites affected 

19 Other parts of head 

21 Neck, inclusive spine, and vertebra in the neck 

29 Other parts of neck 

31 Back, including spine and vertebra in the back 

39 Back, other parts not mentioned above 

41 Rib cage, ribs including joints and shoulder blades 

42 Chest area including organs 

43 Pelvic and abdominal area including organs 

48 Torso, multiple sites affected 

49 Other parts of torso 

51 Shoulder and shoulder joints 

52 Arm, including elbow 

53 Hand 

54 Finger(s) 

55 Wrist 

58 Upper extremities, multiple sites affected 

59 Other upper extremities 

61 Hip and hip joint 

62 Leg, including knee 

63 Ankle 

64 Foot 

65 Toe(s) 

68 Lower extremities, multiple sites affected 

69 Other lower extremities 

71 Whole body (Systemic effects) 

78 Multiple sites of the body affected 

XX Missing value 
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Table A7: Feature description of the Contact mode of injury variable 

Code Contact mode 

11 Indirect contact with a welding arc, spark, or lightning (passive) 

12 Direct contact with electricity, receipt of electrical charge in the body 

13 Contact with naked flame or a hot or burning object or environment 

14 Contact with a cold or frozen object or environment 

15 Contact with hazardous substances via inhalation 

16 Contact with hazardous substances through skin or eyes 

19 Contact with electrical voltage, temperature, or hazardous substances 

20 Drowned, buried, or enveloped 

30 Horizontal or vertical impact with or against a stationary object 

40 Struck or collision with object in motion 

50 Contact with sharp, pointed, rough or coarse material 

60 Trapped or crushed 

70 Physical or mental stress 

80 Bite, kick, etc. (animal or human) 

99 Other contact modes of injury 

XX Missing 

Table A8: Feature description of the Age variable 

Code Age 

1 under 15 

2 15-19

3 20-25

4 25-29

5 30-34

6 35-39

7 40-44
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8 45-49

9 50-54

10 55-59

11 60-64

12 over 64 



Tapaturmavakuutuskeskus TVK, Itämerenkatu 11-13, 00180 Helsinki


	Julkaisusarja, kolme ekaa sivua.pdf
	Gradu (SH).pdf
	1. Introduction
	1.1. Objective and research questions

	2. Background
	2.1. Definition of a workplace accident
	2.2. The care chain
	2.2.1. The process of handling insurance claims
	2.2.2. Before compensation decision
	2.2.3. After compensation decision

	2.3. The cost of workplace accidents
	2.3.1. Temporary cost
	2.3.2. Permanent cost
	2.3.3. Indirect cost

	2.4. Consequences of administrative delays
	2.5. Consequences of delays in the treatment
	2.6. Previous research on accident outcome prediction

	3. Data
	3.1. Description of the data and variables
	3.2. Distributions of the variable levels
	3.2.1. Material agent associated with the mode of injury
	3.2.2. Working process
	3.2.3. Part of the body injured
	3.2.4. Deviation
	3.2.5. Physical activity
	3.2.6. Age
	3.2.7. Contact mode of injury
	3.2.8. Injury type
	3.2.9. Gender
	3.2.10. Seriousness of the workplace accident


	4. Methods
	4.1. Ensemble methods
	4.2. Decision trees
	4.3. XGBoost
	4.3.1. Tree ensemble
	4.3.2. Objective function
	4.3.3. Regularization
	4.3.4. Loss function
	4.3.5. Additive training
	4.3.6. The Structure Score
	4.3.7. Learning the tree structure
	4.3.8. Pruning
	4.3.9. Time complexity

	4.4. Hyperparameter optimization
	4.4.1. Bayesian optimization
	4.4.2. Sequential model-based optimization (SMBO)
	4.4.3. Tree-structured Parzen Estimator (TPE)
	4.4.4. XGBoost parameters

	4.5. Imbalance learning
	4.5.1. Metrics for imbalance learning
	4.5.1.1. Confusion matrix
	4.5.1.2. ROC-curves and AUC



	5. Results
	5.1. Model selection
	5.2. Training the model
	5.2.1. Hyperparameter optimization

	5.3. Evaluation of the results
	5.3.1. Evaluation metrics
	5.3.2. Feature importance
	5.3.3. Decision rules
	5.3.4. Wrongly classified non-serious accidents


	6. Conclusion
	6.1. Research summary
	6.2. Practical implications
	6.3. Limitations of the research
	6.4. Suggestions for further research

	References:
	Appendix A: Feature descriptions of the variables


